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Abstract: The subgroup of quadratic residues modulo a large safe prime is the most common choice
in practice for the ElGamal cryptosystem. Computations in this group are simple and sufficiently
efficient for at least 128 bits of security, and the DDH problem seems to be hard. In its practical
application, however, this particular group has also several disadvantages, for example the relatively
high cost for testing group membership or the uneven message space. In this paper, we discuss an
alternative group for ElGamal, called multiplicative group of absolute values modulo a safe prime,
which is isomorphic to the subgroup of quadratic residues, but with a slightly different group operation
and much better properties for practical applications such as e-voting.
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1 Introduction

In cryptographic protocol design, the ElGamal cryptosystem is a common choice for
achieving confidentiality in different contexts, for example for protecting the secrecy of the
submitted votes in an e-voting application. ElGamal is simple, efficient, and well understood,
and its homomorphic property offers a flexible toolbox of cryptographic operations such
as re-encryption or threshold decryption. In e-voting applications, homomorphic tallying
and mixnets are the two most prominent approaches for achieving vote secrecy and
E2E-verifiability simultaneously. Both techniques rely on the homomorphic property.

ElGamal is IND-CPA secure in groups in which the decisional Diffie-Hellman (DDH)
problem cannot be solved efficiently. Since the DDH problem is simpler than the related
CDH (computational Diffie-Hellman) or DL (discrete logarithm) problems, selecting an
appropriate group is more delicate. In the multiplicative group Z∗𝑝 of integers modulo a
prime 𝑝 (also denoted as the quotient group (Z/𝑝Z)× of units), for example, the DDH
problem can be solved efficiently using the Legendre symbol, even if solving CDH or
DL is generally believed to be a hard problem. Therefore, Z∗𝑝 is not a suitable group for
ElGamal [2].
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1.1 The Subgroup of Quadratic Residues

A better choice is the subgroup G𝑞 ⊂ Z∗𝑝 of quadratic residues modulo a large safe prime
𝑝 = 2𝑞+1, which contains only half of the elements of Z∗𝑝 (the quadratic residues 𝑥2 mod 𝑝).
To this day, no efficient non-quantum algorithm is known for solving DDH in G𝑞 efficiently,
and this is why G𝑞 is often selected for ElGamal. Other options such as elliptic curves
are slightly more complicated to use and less flexible in concrete applications (their main
advantage comes from the shorter keys). In practical applications, however, G𝑞 also has
several disadvantages:

• In applications of ElGamal, where elements of G𝑞 are exchanged between the
participants of a cryptographic protocol, it is important to confirm the membership of
each received group element, because otherwise the IND-CPA property of ElGamal
is no longer guaranteed.3 In a worst-case scenario, not checking group memberships
in a single case may undermine the security of the whole application. In Z∗𝑝 =

{1, . . . , 𝑝 − 1}, all integers between 1 and 𝑝 − 1 are group members, but in G𝑞 ,
the group members depend strongly on 𝑝. While 5 for example is a member of
G5 = {1, 3, 4, 5, 9}, it is not a member of G11 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.
Testingmembership inG𝑞 requires the computation of either amodular exponentiation
or a Legendre symbol. In both cases, compared to testing membership in Z∗𝑝, this
is relatively expensive and may have an impact on the overall performance of the
application (see Sect. 4 for a discussion on the cost of membership testing in different
programming languages).

• A related problem of using G𝑞 for ElGamal is the fact that G𝑞 itself is the message
space of the encryption scheme. If a general-purpose message 𝑚 ∈ {0, 1}𝑛 is given
as a sequence of bits of length 𝑛 < ‖𝑞‖, then 𝑚 needs to be encoded into G𝑞 as a
preliminary step before the encryption and decoded from G𝑞 as a additional step
after the decryption. Several options for such an encoding exist, but since they all
have their advantages and disadvantages, expert knowledge is needed for selecting
the most appropriate encoding depending on the application.4

• One particular approach for encoding messages into G𝑞 is to define an explicit
mapping from the message space into corresponding elements of G𝑞 . Obviously, this
approach only works if the size of the message space is reasonably small to allow the
enumeration of all elements. In e-voting applications, for example, where the number
of voting options is usually very limited, single voting options are often encoded as

3 Implementing systematic group membership tests is a general best practice in cryptographic protocol design.
Here is a current blog about this topic: https://blog.trailofbits.com/2022/11/29/specialized-zero-
knowledge-proof-failures. We also refer to [3, 4] for a related discussions on Helios and TLS backdoors.

4 Examples of common message encodings Γ : Z𝑞 → G𝑞 are the following: (1) Γ(𝑚) =
(
𝑚+1
𝑝

)
(𝑚 + 1) mod 𝑝,

(2) Γ(𝑥) = 𝑔𝑚 mod 𝑝, and (3) Γ(𝑚) = (𝑚 + 1)2 mod 𝑝. In [5], these encodings are called T2, T3, and T4,
respectively.

https://blog.trailofbits.com/2022/11/29/specialized-zero-knowledge-proof-failures
https://blog.trailofbits.com/2022/11/29/specialized-zero-knowledge-proof-failures
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prime numbers in G𝑞 and multiple voting options as corresponding products of prime
numbers (examples of systems using this representation can be found in [7,8,11,12]).
After decryption, individual votes are obtained from factorizing this product (under
the condition that the product is smaller than 𝑝). The problem in such a system, in
which 𝑝 is not a fixed system parameter (for example to support different security
levels), this mapping needs to be refined depending on the selected safe prime 𝑝. This
is not a difficult problem, because for 𝑛 voting options one could simply select the 𝑛
smallest primes in G𝑞 , and they can be computed and stored efficiently, but it is still a
bothersome complication.

• Typically, applications relying on the hardness of the discrete logarithm require the
selection of one or multiple group generators. Since every element of G𝑞 (except
the identity element 1) generates the whole group, generators can be found easily.
However, if again 𝑝 is not a fixed system parameter, then the generator selection
must be repeated whenever a new safe prime 𝑝 is selected. In a mixnet-based e-
voting application, in which 𝑁 denotes the number of submitted votes (for example
𝑁 = 100’000), the same amount 𝑁 of verifiably random (independent) generators
needs to be chosen as a preparatory step for proving the correctness of the shuffle.
This is again not a very difficult problem [1, Appendix A.2.3], but it also complicates
the implementation of ElGamal for such purposes.

To illustrate the practical difficulties of using G𝑞 for ElGamal, consider the current system
specification of the Swiss Post e-voting system [12, Section 3.4.2]. To cope with the fact
that the system selects a different safe prime in every election, the encoding of the voting
options into prime numbers of G𝑞 is implemented by an object called pTable. This object
needs to be known by every protocol participant, and they all need to have exactly the
same object for executing the protocol. The latest protocol version properly takes care of
this problem using digital signatures, but it clearly adds to the overall protocol complexity.
Similar complications exist in other implementations [5].

1.2 Contribution and Paper Overview

In this paper, we propose an alternative group for ElGamal, denoted by Z+𝑝 = {1, . . . , 𝑞},
which eliminates all the practical disadvantages of G𝑞 listed in the previous subsection. We
call it multiplicative group of absolute values modulo 𝑝, where 𝑝 = 2𝑞 + 1 is a safe prime as
for G𝑞 . Its group operation is only slightly more expensive than modular multiplication, and
in modular exponentiations, the small overhead is required only once. Nevertheless, we can
show that Z+𝑝 and G𝑞 are isomorphic, and that the isomorphism can be computed efficiently
in both directions. This implies that the hardness of the DDH problem in Z+𝑝 must be the
same as in G𝑞 .

The rest of the paper is organized as follows: in Sect. 2, we introduce the alternative group
Z+𝑝 for ElGamal and prove the existence of an efficient isomorphism between Z+𝑝 and G𝑞 , in
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Sect. 3, we review the practical problems mentioned in the previous subsection from the
perspective of Z+𝑝, in Sect. 4, we discuss the cost of membership testing based on some
experimental results, and in Sect. 5, we summarize our findings and formulate a general
recommendation and final conclusion.

2 An Alternative DDH Secure Group for ElGamal

The motivation for finding an alternative group for ElGamal comes from a proposal
in [8, Subsection 12.1] to optimize the performance of group membership testing in G𝑞 .
The idea of the proposed optimization is to represent quadratic residues 𝑥 ∈ G𝑞 by one of
their square roots √

𝑥 = ±𝑥
𝑞+1
2 mod 𝑝,

and to use this square root as a witness to test group membership by checking the equality
𝑥 = (

√
𝑥)2 mod 𝑝 (using a single modular multiplication). Using this technique, it turns out

that group operations can be performed directly on the square roots. This observation is the
starting point for the alternative group discussed in this paper.

2.1 Background on Group Theory

A group is an algebraic structure (𝐺, ◦, inv, 𝑒), where 𝐺 is a finite set of group elements,
◦ : 𝐺 × 𝐺 → 𝐺 a binary operation called group operation, inv : 𝐺 → 𝐺 a unary operation
called inverse, and 𝑒 ∈ 𝐺 a specific group element called identity, such that the following
properties are satisfied:

• Associativity: 𝑥 ◦ (𝑦 ◦ 𝑧) = (𝑥 ◦ 𝑦) ◦ 𝑧, ∀𝑥, 𝑦, 𝑧 ∈ 𝐺,

• Inverse: 𝑥 ◦ inv(𝑥) = 𝑒, ∀𝑥 ∈ 𝐺,

• Identity: 𝑥 ◦ 𝑒 = 𝑒 ◦ 𝑥 = 𝑥, ∀𝑥 ∈ 𝐺.

It is common to simply use 𝐺 for referring to the whole group (𝐺, ◦, inv, 𝑒). If a group 𝐺
is finite, then 𝑞 = |𝐺 | is called group order. If a subset 𝐻 ⊆ 𝐺 is closed under the group
operation, i. e., if 𝑥 ◦ 𝑦 ∈ 𝐻 for all 𝑥, 𝑦 ∈ 𝐻, then (𝐻, ◦, inv, 𝑒) is called a subgroup of 𝐺.
Lagrange’s theorem states that the subgroup order |𝐻 | always divides the group order |𝐺 |.

Groups are sometimes written additively as (𝐺, +,−, 0) or multiplicatively as (𝐺, ·,−1 , 1),
depending on the nature of the group operation. In multiplicative groups, exponentiation
𝑥 = 𝑔𝑢 is defined as the result of applying the group operator 𝑢 − 1 times to a given element
𝑔 ∈ 𝐺, and 𝑔0 = 1 is defined to be the base case for 𝑢 = 0. If 𝑔 and 𝑥 are given, then
𝑢 = log𝑔 𝑥 is the discrete logarithm to the base 𝑔 of 𝑥. If 𝑢 = log𝑔 𝑥 exists for every 𝑥 ∈ 𝐺
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in a finite group of order 𝑞, then 𝑔 is called a generator, because it generates the whole set
𝐺 = {𝑔𝑢 : 0 ≤ 𝑢 < 𝑞} of group elements. If at least one generator exists, the group is called
cyclic. In a prime-order group, due to Lagrange’s theorem, every element of 𝐺 \ {1} is a
generator.

If a generator 𝑔 of a finite cyclic group of order 𝑞 is given, then computing 𝑢 from a single
given value 𝑥 = 𝑔𝑢 is called discrete logarithm problem (DL), computing 𝑧 = 𝑔𝑢𝑣 from two
given values 𝑥 = 𝑔𝑢 and 𝑦 = 𝑔𝑣 is called computational Diffie-Hellman problem (CDH),
and deciding whether 𝑤 = 𝑢𝑣 mod 𝑞 holds for three given values 𝑥 = 𝑔𝑢 , 𝑦 = 𝑔𝑣 , and
𝑧 = 𝑔𝑤 is called decisional Diffie-Hellman problem (DDH). Clearly, solving DL also solves
CDH and DDH, and solving CDH also solves DDH, but the converse is not true. DDH is
therefore the simplest of the three problems.

In certain groups, these problems seem to be computationally hard, which means that no
known algorithm solves the problem efficiently in polynomial time. In the multiplicative
group Z∗𝑝 = {1, . . . , 𝑝 − 1} of integers modulo a prime 𝑝, both DL and CDH are commonly
believed to be hard, but DDH can be solved efficiently using the Legendre or Jacobi symbol.
In large subgroups of Z∗𝑝 , however, DDH also seems to be hard. One particular case of such
a subgroup is the prime-order group G𝑞 = {𝑥2 mod 𝑝 : 𝑥 ∈ Z∗𝑝} of quadratic residues for a
safe prime 𝑝 = 2𝑞 + 1. In this particular case, we have |Z∗𝑝 | = 2𝑞 and |G𝑞 | = 𝑞, i. e., G𝑞

contains exactly half of the elements of Z∗𝑝 . Group membership 𝑥 ∈ G𝑞 can be tested either
by modular exponentiation 𝑥𝑞 mod 𝑝 = 1 or by computing the Legendre symbol

(
𝑥
𝑝

)
= 1.

2.2 The Multiplicative Group of Absolute Values Modulo 𝑝

Consider the additive group (Z𝑝 , +,−, 0), where Z𝑝 = {0, . . . , 𝑝 − 1} denotes the set of
non-negative integers smaller than the prime modulus 𝑝. Additions in Z𝑝 are computed
modulo 𝑝, which implies that the additive inverse −𝑥 mod 𝑝 (called negation) is equal
to 𝑝 − 𝑥 for 𝑥 ≠ 0 (trivially, −0 is equal to 0). For an odd prime 𝑝 > 2, which implies
Z𝑝 = {0, . . . , 2𝑞} for some integer 𝑞 = (𝑝−1)/2 (not necessarily prime), we can decompose
Z𝑝 naturally into two disjoint sets

Z+𝑝 = {1, . . . , 𝑞} and Z−𝑝 = {𝑞 + 1, . . . , 2𝑞}

of positive and negative elements modulo 𝑝, respectively, with the property that 𝑥 ∈ Z+𝑝
implies −𝑥 ∈ Z−𝑝 and 𝑥 ∈ Z−𝑝 implies −𝑥 ∈ Z+𝑝.5 Furthermore, we can define the absolute
value |𝑥 | ∈ Z+𝑝 naturally as |𝑥 | = 𝑥 for 𝑥 ∈ Z+𝑝 and |𝑥 | = −𝑥 mod 𝑝 for 𝑥 ∈ Z−𝑝 (with the
trivial case of |0| = 0), which is equivalent to computing |𝑥 | = min(𝑥, 𝑝 − 𝑥) ∈ Z+𝑝 using
one negation and one comparison.

5 Our intuition for calling the element of the larger half of Z𝑝 negative is the fact that they can be written
equivalently as Z−𝑝 = {𝑝 − 𝑞, . . . , 𝑝 − 1} = {−𝑞, . . . , −1}. The full set of integers modulo 𝑝 can then be
written as Z𝑝 = {−𝑞, . . . , −1, 0, 1, . . . , 𝑞 } = {−𝑞, . . . , 𝑞 } with a natural symmetry between Z+𝑝 and Z−𝑝
around 0 (a similar idea has been used in the definition of the absolute Rabin-function [6, Section 6], but the
context there is slightly different).
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Given these ingredients, we are now ready propose an alternative group for ELGamal. For
this, consider the algebraic structure (Z+𝑝 , ⊗, inv, 1) with the group operation and inverse
defined as follows:

𝑥 ⊗ 𝑦
def
= |𝑥𝑦 mod 𝑝 |,

inv(𝑥) def= |𝑥−1 mod 𝑝 |.

Thus, compared to the operations in Z∗𝑝, the overhead of the operations in Z+𝑝 is limited
to the computation of the absolute value, which requires one comparison and at most one
negation. Note that to minimize the overhead, for example in exponentiations, computing
absolute values can always be postponed to a single ultimate step. This follows from the
simple observation that

| ( |𝑥 |·|𝑦 | mod 𝑝) | =


|𝑥𝑦 mod 𝑝 |, if 𝑥, 𝑦 ∈ Z+𝑝 ,
| − 𝑥𝑦 mod 𝑝 |, if 𝑥 ∈ Z+𝑝 , 𝑦 ∈ Z−𝑝 ,
| − 𝑥𝑦 mod 𝑝 |, if 𝑥 ∈ Z−𝑝 , 𝑦 ∈ Z+𝑝 ,
|𝑥𝑦 mod 𝑝 |, if 𝑥, 𝑦 ∈ Z−𝑝 .

= |𝑥𝑦 mod 𝑝 |,

| ( |𝑥 |−1 mod 𝑝) | =
{
|𝑥−1 mod 𝑝 |, if 𝑥 ∈ Z+𝑝 ,
| − 𝑥−1 mod 𝑝 |, if 𝑥 ∈ Z−𝑝 .

= |𝑥−1 mod 𝑝 |,

hold for all 𝑥, 𝑦 ∈ Z∗𝑝 . This means that we can start with positive elements from Z+𝑝 , apply
the group operations (multiplication, inverse, division, exponentiation) in Z∗𝑝 , and ultimately
map the result from Z∗𝑝 back to Z+𝑝 by calculating a single absolute value. The overhead of
working in Z+𝑝 is therefore always a single comparison and at most one negation, which is
negligible in cryptographic applications that use considerably more expensive operations
such as modular exponentiations.

Using the above property of the absolute value, it is simple to demonstrate that (Z+𝑝 , ⊗, inv, 1)
satisfies the properties of a group:

• Associativity: 𝑥 ⊗ (𝑦 ⊗ 𝑧) = |𝑥( |𝑦𝑧 mod 𝑝 |) mod 𝑝 |
= |𝑥(𝑦𝑧 mod 𝑝) mod 𝑝 | = |𝑥𝑦𝑧 mod 𝑝 |
= | (𝑥𝑦 mod 𝑝)𝑧 mod 𝑝 | = | ( |𝑥𝑦 mod 𝑝 |)𝑧 mod 𝑝 |
= (𝑥 ⊗ 𝑦) ⊗ 𝑧. �

• Inverse: 𝑥 ⊗ inv(𝑥) = |𝑥( |𝑥−1 mod 𝑝 |) mod 𝑝 |
= |𝑥(𝑥−1mod 𝑝) mod 𝑝 | = |𝑥𝑥−1mod 𝑝 | = |𝑒 | = 𝑒. �

• Identity: 𝑥 ⊗ 𝑒 = |𝑥𝑒 mod 𝑝 | = |𝑥 | = 𝑥,

𝑒 ⊗ 𝑥 = |𝑥𝑒 mod 𝑝 | = |𝑥 | = 𝑥. �
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We call Z+𝑝 multiplicative group of absolute values modulo 𝑝. In Appendix A, a numerical
example is given to demonstrate computations in Z+𝑝 and its application to ElGamal. Note
that so far we have not imposed any restrictions on 𝑝 other than assuming that 𝑝 > 2 is an
odd prime, and we do not know whether DL, CDH, or DDH are hard problems in this group.

Another way of proving that Z+𝑝 with the operations as defined above forms a group comes
from defining Z+𝑝 as the quotient group Z∗𝑝/G2, where G2 = {1, 𝑝 − 1} denotes the trivial
subgroup of Z∗𝑝 of order 2. Since modular multiplication is commutative, it follows that G2
is a normal subgroup of Z∗𝑝 , which implies that Z∗𝑝/G2 = {𝑎G2 : 𝑎 ∈ Z∗𝑝} with an operation
defined as (𝑎G2) (𝑏G2) = (𝑎𝑏) G2 forms a group. Note that the 𝑞 = [Z∗𝑝 : G2] =

𝑝−1
2

elements of Z∗𝑝/G2 are the cosets {1, 𝑝 − 1}, {2, 𝑝 − 2}, . . . , {𝑞, 𝑞 + 1} of G2, from which
we obtain Z+𝑝 by simply selecting the smaller of the two values as coset representatives:

Z+𝑝 = {min(𝑥, 𝑦) : {𝑥, 𝑦} ∈ Z∗𝑝/G2} = {1, . . . , 𝑞}.

This alternative definition of Z+𝑝 , together with the above-mentioned group operation defined
for the quotient group, leads directly to the group operation defined for Z+𝑝 at the beginning
of this section.

2.3 Proving the Existence of an Isomorphism

To use Z+𝑝 for ElGamal, we must have good reasons to believe that DDH (and therewith
CDH and DL) is a hard problem. In the special case of a safe prime 𝑝 = 2𝑞 + 1, where
𝑞 is also prime, we can demonstrate that DDH is equally hard in Z+𝑝 and G𝑞 by showing
that these groups are isomorphic and that the isomorphism can be computed efficiently in
both directions.6 Under this premise, an efficient DDH solver in Z+𝑝 would immediately
imply an efficient DDH solver in G𝑞 by applying the isomorphism forth and back. Since
this conjecture is in contradiction with current beliefs that DDH is hard in the subgroup of
quadratic residues, we can assume that DDH is also hard in Z+𝑝 . In other words, Z+𝑝 and G𝑞

are equally applicable to cryptographic applications.

Two groups 𝐺 and 𝐻 are called isomorphic, denoted by 𝐺 � 𝐻, if a structure-preserving
(bijective and homomorphic) mapping 𝜙 : 𝐺 → 𝐻 exists. For proving Z+𝑝 � G𝑞 , it
is therefore sufficient to find a single candidate mapping 𝜙 : Z+𝑝 → G𝑞 (and therefore
𝜙−1 : G𝑞 → Z+𝑝) and to prove that the mapping is bijective and homomorphic. Our proposal
is the following:

𝜙(𝑥) = 𝑥2 mod 𝑝, for 𝑥 ∈ Z+𝑝 ,

𝜙−1 (𝑦) = |√𝑦 mod 𝑝 | = |𝑦
𝑞+1
2 mod 𝑝 |, for 𝑦 ∈ G𝑞 .

6 Note that 𝑝 being a safe prime is not a necessary condition for finding an efficient isomorphism between the
multiplicative group of absolute values and the group of quadratic residues modulo 𝑝. However, since 𝑞 being
prime ensures the absence of non-trivial subgroups, it is the most interesting case for cryptographic applications.
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Note that, given this definition, the proposed mapping is efficiently computable in both
directions, with essentially one modular multiplication for 𝜙 and one modular exponentiation
for 𝜙−1.

A precondition for 𝜙 being a bijection is already met by the fact 𝑞 = |Z+𝑝 | = |G𝑞 | is the
order of both the domain and the codomain. What then remains to prove is that 𝜙−1 inverts
𝜙 for all 𝑥 ∈ Z+𝑝. From the fact that 𝑥𝑞 ≡ ±1 (mod 𝑝), depending on whether 𝑥 ∈ G𝑞 or
𝑥 ∉ G𝑞 , it follows that this is actually the case:

𝜙−1 (𝜙(𝑥)) = | (𝑥2 mod 𝑝)
𝑞+1
2 mod 𝑝 | = | (𝑥2)

𝑞+1
2 mod 𝑝 |

= |𝑥𝑞+1 mod 𝑝 | = |𝑥𝑥𝑞 mod 𝑝 | = |± 𝑥 | = 𝑥. �

To prove that 𝜙 is homomorphic, we must show that 𝜙(𝑥 ⊗ 𝑦) = 𝜙(𝑥)𝜙(𝑦) mod 𝑝 holds for
all 𝑥, 𝑦 ∈ Z+𝑝:

𝜙(𝑥 ⊗ 𝑦) = ( |𝑥𝑦 mod 𝑝 |)2 mod 𝑝

=

{
(𝑥𝑦)2 mod 𝑝, if 𝑥𝑦 mod 𝑝 ≤ 𝑞,

(−𝑥𝑦)2 mod 𝑝, if 𝑥𝑦 mod 𝑝 > 𝑞.

= (𝑥𝑦)2 mod 𝑝 = (𝑥2 mod 𝑝) (𝑦2 mod 𝑝) mod 𝑝
= 𝜙(𝑥)𝜙(𝑦) mod 𝑝. �

Put together, this proves that Z+𝑝 � G𝑞 , and therefore we conclude that DDH is equally hard
in Z+𝑝 and in G𝑞 . This means that we can recommend using Z+𝑝 for ElGamal without any
restrictions or additional precautions. Note that due the symmetry between Z+𝑝 and Z−𝑝, a
similar isomorphic group exists for Z−𝑝 .

3 Discussion of Properties

If the group Z+𝑝 is used for ElGamal instead of G𝑞 , we benefit from the property that the
new message space is compatible across different values of 𝑝 in the sense that Z+𝑝 ⊂ Z+

𝑝′

for 𝑝 < 𝑝′. The absence of such a property for G𝑞 is the main reasons for the practical
disadvantages listed in Sect. 1.1. We can now review the topics from this list in the light of
Z+𝑝:

• Testing membership 𝑥 ∈ Z+𝑝 is very efficient, since only two comparisons 1 ≤ 𝑥 and
𝑥 ≤ 𝑞 are necessary (note that 1 ≤ 𝑥 is actually a signum test sgn(𝑥) = 1). Compared
to computing 𝑥𝑞 mod 𝑝 = 1 or equivalently

(
𝑥
𝑝

)
= 1 for testing membership in G𝑞 ,

the cost of two comparisons is negligible, as we can see in the performance results
discussed in Sect. 4.
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• Since Z+𝑝 = {1, . . . , 𝑞} is a smooth message space in the sense that all consecutive
elements between a lower and an upper limit are group members, the encoding of a
general-purpose message 𝑚 ∈ {0, 1}𝑛 of length 𝑛 < ‖𝑞‖ is much simpler than in G𝑞 .
In the most straightforward encoding, where the bits of 𝑚 are simply interpreted as
a binary number, only the special case of 𝑚 = 0 (all 𝑛 bits set to 0) is excluded by
Z+𝑝. In applications where 𝑚 = 0 is a possible message, one could either generally
increase every 𝑚 by 1 or substitute 𝑚 = 0 by 𝑚 = 𝑞. Both options can be regarded as
a bijective mapping between Z𝑞 and Z+𝑝 . Therefore, different values for 𝑝 only have
an effect on the message length 𝑛, but not on the encoding of the messages itself.

• If a small message space is encoded into Z+𝑝 by defining an explicit mapping for each
possible message, then this mapping can be defined independently of the choice of 𝑝.
In the particular case, where the 𝑛 voting options in an e-voting system are encoded as
prime numbers, we can always use the exact same set of prime numbers, for example
the 𝑛 smallest prime numbers 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, . . . , 𝑝𝑛. Redefining this
mapping when 𝑝 changes is therefore no longer necessary.

• Another advantage in the same context is the increased capacity of a single message
for encoding combinations of voting options by corresponding products of prime
numbers, even if this is rarely a problem in practice. The advantage comes from the
compactness of the encoding in the sense that the 𝑛 smallest prime numbers lie closer
to each other in Z+𝑝 and therefore require less bits than in G𝑞 . If voters can select up
to 𝑘 < 𝑛 different voting options in a 𝑘-out-of-𝑛 election, then the bit length ‖𝑝‖ may
impose an upper limit for 𝑘 depending on 𝑛. Tab. 1 shows these upper bounds 𝑘max
for ‖𝑝‖ ∈ {2048, 3072} and different values of 𝑛. The values are derived from the
“worst case”, in which the voter selects the 𝑘 largest from the 𝑛 smallest prime group
members. The values given under ℓmax are the sizes of corresponding combined vote
encodings. As one can see, the limits for G𝑞 are approximately 10% smaller than the
limits for Z+𝑝 .

• The problem of selecting suitable group generators is much simpler in Z+𝑝 , because
any of the 𝑞 − 1 values in the range 2 ≤ 𝑔 ≤ 𝑞 is a generator of Z+𝑝 , and also of any
larger group Z+

𝑝′ with 𝑝
′ > 𝑝. The selection can therefore be fixed independently of

the actual choice of 𝑝. For example, if 𝑘 (non-independent) generators are needed
in an application, then one could simply take 𝑔1 = 2, 𝑔2 = 3, . . . , 𝑔𝑘 = 𝑘 + 1. If
independent generators are needed, they must be chosen verifiably at random as for
G𝑞 , but then they can be used universally across different groups (as long as 𝑝 and 𝑝′
are also picked verifiably at random).

This discussion shows that each of the practical disadvantages of using G𝑞 for ElGamal
turns into an advantage for Z+𝑝 at almost no cost.
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‖𝑝‖ = 2048 bits ‖𝑝‖ = 3072 bits
G𝑞 Z+𝑝 G𝑞 Z+𝑝

𝑛 𝑘max ‖𝑝𝑛‖ ℓmax 𝑘max ‖𝑝𝑛‖ ℓmax 𝑘max ‖𝑝𝑛‖ ℓmax 𝑘max ‖𝑝𝑛‖ ℓmax
100 (99) 11 856 (99) 10 729 (99) 11 856 (99) 10 729
200 (199) 12 1958 (199) 11 1703 (199) 12 1958 (199) 11 1703
300 176 13 2038 201 11 2046 285 13 3066 (299) 11 2765
400 167 13 2046 186 12 2039 256 13 3062 290 12 3065
500 161 13 2042 178 12 2041 245 13 3064 273 12 3066
600 157 14 2046 172 13 2037 238 14 3069 263 13 3070
700 153 14 2038 168 13 2041 232 14 3064 255 13 3064
800 151 14 2046 165 13 2047 228 14 3070 249 13 3062
900 148 14 2037 162 13 2045 224 14 3066 245 13 3070
1000 146 15 2039 159 13 2038 221 15 3070 241 13 3069
1200 143 15 2047 155 14 2037 215 15 3066 234 14 3061
1400 140 15 2040 152 14 2039 211 15 3065 229 14 3060
1600 138 15 2044 150 14 2047 207 15 3058 225 14 3061
1800 136 16 2040 147 14 2036 205 16 3069 222 14 3066
2000 134 16 2035 145 15 2034 202 16 3061 219 15 3065

Tab. 1: Prime number encoding of combined voting options in 𝑘-out-of-𝑛 elections. In cases without
an upper limit for 𝑘 other than 𝑘 < 𝑛, 𝑘max = 𝑛 − 1 is shown in parentheses (for example 𝑘max = 99
for 𝑛 = 100). The values shown for G𝑞 are approximate, because they depend slightly on the actual
choice of 𝑝.

4 The Cost of Membership Testing

To underline our statements about the performance of different group membership tests, we
conducted some experiments with different implementations of modular exponentiation
and the Jacobi symbol (which is equivalent to the Legendre symbol when 𝑝 is prime). The
results of these experiments are shown in Tab. 2. It is interesting to observe that modular
exponentiation in C (using the GMP library) is approximately 35% faster than in Java,
whereas computing the Jacobi symbol in C is more than 99 times faster than in Java (using
the Bouncy Castle library). Therefore, it seems that the Jacobi symbol implementation in
Bouncy Castle is far from being optimal (it is only between 3 to 5 times faster than modular
exponentiation). The same holds for the modular exponentiation implementation in the
Javascript library verificatum-vjsc, which is more than 30 times slower than in Java and
about 5 times slower than in Python.

Our measurements also show that the GMP implementation of the Jacobi symbol is the only
option with negligible costs for conducting 10’000 group membership tests in G𝑞 . Even
for 1 million membership tests, which GMP could handle approximately in 10 seconds
for 2048-bits integers and in 20 seconds for 3072-bits integers, performing these tests
seems not to grow into a major factor compared to other computations in corresponding
applications. Note that a batch of exactly one million group elements results from the output
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‖𝑝‖ = 2048 bits ‖𝑝‖ = 3072 bits
𝑥 ∈ Z+𝑝 𝑥 ∈ G𝑞 𝑥 ∈ Z+𝑝 𝑥 ∈ G𝑞
0 < 𝑥 < 𝑞

(
𝑥
𝑝

)
= 1 𝑥𝑞 mod 𝑝 = 1 0 < 𝑥 < 𝑞

(
𝑥
𝑝

)
= 1 𝑥𝑞 mod 𝑝 = 1

C < 1ms 98ms 23’224ms < 1ms 186ms 72’992ms

Java < 1ms 12’871ms 35’705ms < 1ms 27’132ms 114’262ms

Python < 1ms 15’447ms 243’561ms < 1ms 34’762ms 691’568ms

Javascript < 1ms 12’453ms 692’821ms < 1ms 23’878ms 2’162’474ms

Tab. 2: Performance of membership testing in Z+𝑝 and G𝑞 using different methods and programming
languages. The measurements were conducted on aMacBook Pro (2.3 GHz 8-Core Intel Core i9) using
a single-core process over a batch of 10’000 test vectors, each of which consisting of an integer 𝑥 and
a safe prime 𝑝 = 2𝑞 + 1 of the required length of either 2048 or 3072 bits. For C, we used the functions
mpz_jacobi and mpz_powm from the GMP library (verion 6.2.1). For Java, we used the build-in
method BigInteger::modPow and the method IntegerFunctions::jacobi from the Bouncy Castle
library (version 1.70). For Javascript, we used the functions modPow and legendre from Wikström’s
verificatum-vjsc library (version 1.1.1). And for Python, we used the pow and jacobi_symbol functions
from the SymPy library (version 1.12).7

of a mixnet with 50’000 input ElGamal encryptions and 5 mixers (using Wikström’s shuffle
proof [9, 13]). In all considered cases, the cost for testing group membership in Z+𝑝 remains
negligible, and it will only grow to approximately 20 milliseconds for 1 million tests.

5 Conclusion

In this paper, we have shown that the commonly used group G𝑞 of quadratic residues
modulo a safe prime should probably no longer be regarded as the best choice in practical
applications of the ElGamal cryptosystem, which depends on the intractability of the DDH
problem. We demonstrated that this group has several drawbacks, which make practical
implementations more complicated, error-prone, and less efficient. Our proposal of using Z+𝑝
as an alternative group for ElGamal eliminates these drawbacks completely while preserving
the intractability of the DDH problem. Therefore, to profit maximally from the advantages
of Z+𝑝 , we generally recommend the replacement of G𝑞 by Z+𝑝 in applications of ElGamal.
Existing implementations can be simplified accordingly.

7 Note that the Python library SymPy provides three similar functions jacobi_symbol, legendre_symbol, and
is_quad_residue, each of which with a different implementation. While jacobi_symbol implements an iterative
version of the efficient𝑂 (log 𝑥 log 𝑝) algorithm from [10, Section 2.4.5], legendre_symbol and is_quad_residue
both compute 𝑥 (𝑝−1)/2 mod 𝑝 if 𝑝 is prime, i. e., their performance is equal to the pow function. Consequently,
users of SymPy are likely to unintendedly pick the wrong function with sub-optimal performance. Problems like
this can be be avoided when working with Z+𝑝 .
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A first implementation of Z+𝑝 can be found in the Java class ZPLus.java in the utilities
sub-module of the OpenCHVote project.8 In Version 1.3 of this library, this class replaces
the implementation of G𝑞 from previous versions. This replacement implied a number of
simplifications at different places of the CHVote protocol specification and the OpenCHVote
code base. Examples are the implementations of the algorithms GetPrimes and GetGenera-
tors, which are now independent of any group parameters, and the removal of the algorithm
GetRandomElement, which is now a special case of GetRandomInteger.
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A Numerical Example

To illustrate the proposed approach with a numerical example, we consider the groups
obtained for 𝑝 = 23 (safe prime) and 𝑞 = 11:

G11 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18},
Z+23 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

In Tab. 3, we show the complete multiplication and exponentiation tables for both groups.
The inverse elements can be observed in the multiplication tables, where each row and each
column contains exactly one entry for the identity element 1, or in the last column (𝑦 = 10)
of the exponentiation table (for example 2−1 = 12 in G11 and 2−1 = 11 in Z+23).

The isomorphism 𝜙(𝑥) = 𝑥2 mod 23 as defined in Sect. 2.3 leads to the following map
between the elements of G11 and Z+23:

𝑥 ∈ Z+23 1 2 3 4 5 6 7 8 9 10 11
𝜙(𝑥) ∈ G11 1 4 9 16 2 13 3 18 12 8 6

If we select 𝑔 = 2 (element of both groups) as a common generator, then (𝑠𝑘, 𝑝𝑘1) =

(7, 13) would be a valid ElGamal key pair for G11, and (𝑠𝑘, 𝑝𝑘2) = (7, 10) would be the
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𝑦

G11 1 2 3 4 6 8 9 12 13 16 18
1 1 2 3 4 6 8 9 12 13 16 18
2 2 4 6 8 12 16 18 1 3 9 13
3 3 6 9 12 18 1 4 13 16 2 8
4 4 8 12 16 1 9 13 2 6 18 3

𝑥 6 6 12 18 1 13 2 8 3 9 4 16
8 8 16 1 9 2 18 3 4 12 13 6
9 9 18 4 13 8 3 12 16 2 6 1
12 12 1 13 2 3 4 16 6 18 8 9
13 13 3 16 6 9 12 2 18 8 1 4
16 16 9 2 18 4 13 6 8 1 3 12
18 18 13 8 3 16 6 1 9 4 12 2

𝑧 = 𝑥𝑦 mod 23

𝑦

Z+23 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11
2 2 4 6 8 10 11 9 7 5 3 1
3 3 6 9 11 8 5 2 1 4 7 10
4 4 8 11 7 3 1 5 9 10 6 2

𝑥 5 5 10 8 3 2 7 11 6 1 4 9
6 6 11 5 1 7 10 4 2 8 9 3
7 7 9 2 5 11 4 3 10 6 1 8
8 8 7 1 9 6 2 10 5 3 11 4
9 9 5 4 10 1 8 6 3 11 2 7
10 10 3 7 6 4 9 1 11 2 8 5
11 11 1 10 2 9 3 8 4 7 5 6

𝑧 = |𝑥𝑦 mod 23|
𝑦

G11 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 16 9 18 13 3 6 12
3 1 3 9 4 12 13 16 2 6 18 8
4 1 4 16 18 3 12 2 8 9 13 6

𝑥 6 1 6 13 9 8 2 12 3 18 16 4
8 1 8 18 6 2 16 13 12 4 9 3
9 1 9 12 16 6 8 3 4 13 2 18
12 1 12 6 3 13 18 9 16 8 4 2
13 1 13 8 12 18 4 6 9 2 3 16
16 1 16 3 2 9 6 4 18 12 8 13
18 1 18 2 13 4 3 8 6 16 12 9

𝑧 = 𝑥𝑦 mod 23

𝑦

Z+23 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 7 9 5 10 3 6 11
3 1 3 9 4 11 10 7 2 6 5 8
4 1 4 7 5 3 11 2 8 9 10 6
5 1 5 2 10 4 3 8 6 7 11 9

𝑥 6 1 6 10 9 8 2 11 3 5 7 4
7 1 7 3 2 9 6 4 5 11 8 10
8 1 8 5 6 2 7 10 11 4 9 3
9 1 9 11 7 6 8 3 4 10 2 5
10 1 10 8 11 5 4 6 9 2 3 7
11 1 11 6 3 10 5 9 7 8 4 2

𝑧 = |𝑥𝑦 mod 23|

Tab. 3: Multiplication and exponentiation tables for G11 and Z+23.

corresponding key pair for Z+23 with the same private key 𝑠𝑘 = 7 from Z11. If we chose
𝑚 = 8 (element of both groups) as message to encrypt with randomization 𝑟 = 4, then

𝑒1 = (24 mod 23, 8·134 mod 23) = (16, 6) ∈ G11 × G11,
𝑒2 = ( |24 mod 23|, |8·104 mod 23|) = (7, 6) ∈ Z+23 × Z

+
23,

are the resulting ElGamal ciphertexts. In both cases, we can perform the decryption using
the private key 𝑠𝑘 = 7 to obtain the original plaintext message:

𝑚 =

{
6/167 mod 23 = 6/18 mod 23 = 6 · 9 mod 23 = 8,
|6/77 mod 23| = |6/5 mod 23| = |6 · 9 mod 23| = 8.


