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Abstract. In this paper, we propose further performance improvements
for Wikström’s shuffle proof. Compared to an implementation based
on general-purpose exponentiation algorithms, we show that the overall
shuffle operation can be accelerated by approximately one order of mag-
nitude. The improvements result partly from applying special-purpose
algorithms for fixed-based and product exponentiations in the right way
and partly from other optimization techniques. Given that shuffling is
often one of the most time-consuming tasks in cryptographic voting pro-
tocols, the achieved speed-up is significant for practical implementations
of electronic voting systems.

1 Introduction

Current proposals for cryptographic voting protocols are often based on verifiable
re-encryption mix-nets. At the core of this approach is a cryptographic shuffle
process under encryption, which is usually used to unlink the decryption of
ciphertext votes from their submission by the voters. It is therefore a method to
establish vote secrecy under the assumption that the mix-net includes sufficiently
many independent mix-nodes performing single shuffle steps in sequential order.
In such a setting, only a coalition of all mix-nodes can break vote secrecy, i.e., a
single non-colluding mix-node is sufficient for achieving the desired security.

Generating and verifying the cryptographic shuffles of a mix-net for a large
number of encrypted votes is often the most time-consuming operation in a vot-
ing protocol. Performance improvements at the core of this method are therefore
relevant for the overall performance of the voting protocol. As an example, con-
sider the verification of the shuffle proofs for an input size of N = 100 000 ElGa-
mal ciphertexts and a mix-net with four mix-nodes. Verifying a single Wikström
shuffle proof requires approximately 9N exponentiations, i.e., 36N = 3600 000
exponentiations are needed for verifying all four proofs. Assuming that comput-
ing modular exponentiations on 3072-bits integers lasts approximately 9 millisec-
onds1 on regular hardware, we obtain approximately 9 hours of computations
as a rough overall estimate. This result shows that performance optimizations
of one or more orders of magnitude are more than welcome for improving the
shuffle proof performance in practical implementations.

1According to measurements conducted in [11] using the fastest available libraries.



1.1 Related Work

There are several competing proposals for non-interactive shuffle proofs2 in the
literature. Provably secure methods by Furukawa and Sako [8], by Wikström
and Terelius [18, 19], and by Bayer and Groth [1] are among the most efficient
ones in the random oracle model (ROM). Methods discovered more recently
based on bilinear pairings are provably secure in the common reference string
model (CRS) [5, 10] or the generic bilinear group model (GBGM) [6, 7]. While
the performance of pairing-based methods has improved in recent years, they
are still slightly less efficient than comparable ROM methods (see Table 1).
Furthermore, their dependence to pairing-friendly elliptic curves may pose a
restriction in voting protocols, which require the encoding of votes in groups or
fields of integers. Nevertheless, reports on remarkable performance results have
demonstrated their maturity and potential for practical applications [6].

Task Operation [8] [18, 19] [1] [5] [6]

Shuffling Exponentiations 2N 2N 2N 2N 2N

Proof generation Exponentiations 8N 8N 2N logm 16N 8N

Proof verification
Exponentiations 10N 9N 4N 2N 7N

Pairings – – – 18N 3N

Security model ROM ROM ROM CRS GBGM

Table 1: Performance comparison of shuffle proofs for ElGamal ciphertexts. N denotes
the size of the shuffle and m = N/n an algorithm parameter from Bayer and Groth’s
method for trading-off performance against proof size.

For achieving performance results similar to [6], it is important to implement
optimization techniques in a systematic manner. Special-purpose algorithms for
fixed-base and product exponentiations are two of the most obvious and most
rewarding techniques. Corresponding algorithms such as the comb method by
Lim and Lee [14, 15] have been available for quite some time, but they are still
not available very frequently in common libraries for large number arithmetic.
A systematic analysis and comparison of fixed-base and product exponentiation
algorithms have been conducted in [11]. For a given use case, the presented results
are useful for selecting the best algorithm and optimal algorithm parameters.

The particular use case of Wikström’s shuffle proof is also briefly discussed
in [11]. For the 2048-bits setting and an input size of N = 100 000 ciphertexts,
a speed-up by a factor of 12.5 is reported for the proof generation. The proof

2Some authors distinguish between zero-knowledge proofs with statistical soundness
and zero-knowledge arguments with computational soundness. According to this defini-
tion, many existing methods for proving the correctness of a shuffle are actually shuffle
arguments. This is also the case for Wikström’s method, which depends on computa-
tionally binding Pedersen commitments and therefore offers computational soundness
only under the discrete logarithm assumption. By calling it a shuffle proof throughout
this paper, we adopt the terminology of Wikström’s original publications.



verification also benefits from the optimizations, but the reported speed-up by
a factor of 3.85 is much more moderate.

1.2 Contribution and Paper Overview

This paper takes the discussion of Wikström’s shuffle proof from [11] as a start-
ing point for a more detailed and systematic analysis of possible performance
optimizations. In addition to the aforementioned exponentiation algorithms, we
also use batch verification techniques and methods for performing membership
tests in groups of quadratic residues with minimal overhead. The main goal is
to further speed up the performance of the proof verification algorithm, which
seems to offer the greatest potential for further improvements.

In Section 2, we summarize existing optimization techniques. With respect
to exponentiation algorithms, we mainly refer to the recently published survey
paper [11] and adopt its notation and results. We also give a summary of existing
batch verification techniques and demonstrate their potential in combination
with efficient group membership tests. In Section 3, we apply these techniques in
a systematic way to Wikström’s shuffle proof. Our analysis, which demonstrates
that regular exponentiations can be avoided almost entirely, is based on counting
the number of necessary multiplications in a prime-order group, for which the
decisional Diffie-Hellman (DDH) assumption is believed to hold. The results of
our analysis are therefore applicable to all groups commonly used in combination
with the ElGamal encryption scheme. We conclude the paper in Section 4 with
a summary of the achieved results and outlook to future research.

2 Performance Optimization Techniques

Computing exponentiations z = Exp(b, e) = be in a given mathematical group
is often the most time-consuming operation in applications of public-key cryp-
tography. For 2048-bits or 3072-bits numbers, computing a single modular ex-
ponentiation natively on off-the-shelf hardware is a matter of a few milliseconds.
Other execution environments such as JavaScript engines are up to 30 times less
efficient [11]. While this is still sufficiently efficient for simple tasks such as sign-
ing or encrypting a message, it may lead to a bottleneck in more complex tasks
such as shuffling a large list of encrypted votes. Computations on elliptic curves
are about one order of magnitude more efficient, but they are less frequently
used in voting protocols.

2.1 Product and Fixed-Base Exponentiation

The recommended general-purpose algorithm for computing z = be for a base
b ∈ G and exponent e ∈ Zq in a multiplicative group (G, ·,−1 , 1) of prime order
q is the sliding window method [16, Alg.14.85]. By referring to it as HAC14.85,
we adopt the notation from [11]. It has a single parameter 1 ≤ k ≤ ` (the
window size), which can be maximized for a given bit length ` = ‖e‖ of the



exponent. Table 2 shows the running time of HAC14.85 as a function of ` and k
and optimal values k for some typical values `. Running times are measured in
expected number Mk(`) of group multiplications (thus assuming that squarings
and general multiplications are equally expensive).

Algorithm Number of Multiplications 112 128 224 256 2048 3072

Plain HAC14.85 Mk(`) = 2k−1 + `+
`

k + 2
k = 3 k = 4 k = 6 k = 7

Product HLG2 M̃m(`,N) =
2m + `

m
+

`

N
m = 5 m = 6 m = 9

Fixed-base HLG3.2
HAC14.117 M̃k,m(`,N) =

`

N

(
2m

km
+ 1

)
+

`

m
+ k

maximize over 1 ≤ k ≤ ` and
1 ≤ m ≤ `

k

Table 2: Expected number of multiplications and optimal algorithm parameters for
plain, product, and fixed-based exponentiation algorithms. The expressions for Mk(`),
M̃m(`,N), and M̃k,m(`,N) have been slightly simplified for improved readability.

The particular task of computing the product z = ProductExp(b, e) =
∏N

i=1 b
ei
i

of exponentiations zi = beii for b = (b1, . . . , bN ) ∈ GN and e = (e1, . . . , eN ) ∈ ZN
q

can be computed much more efficiently than computing the N exponentiations
individually using a general-purpose algorithm such as HAC14.85. The most
efficient product exponentiation (also called simultaneous multi-exponentiation)
algorithm for small problem sizes N is the interleaving method from [17], but
the precomputation table of size O(2N ) prevents the algorithm from scaling.

For large problem instances, Algorithm 2 from [11] offers much better per-
formance. In the remainder of this paper, we will refer to it as HLG2. It has a
single algorithm parameter 1 ≤ m ≤ N , which denotes the size of the sub-tasks
into which the problem is decomposed. If Mm(`,N) denotes the total number of
multiplications needed to solve a problem instance of size N and maximal expo-
nent length ` = maxNi=1‖ei‖, then M̃m(`,N) =Mm(`,N)/N denotes the relative
running time of HLG2. As shown in Table 2, M̃m(`,N) depends on both ` and
N , but the impact of N vanishes for large values N . Optimizing m is therefore
largely independent of N . The parameters m shown in Table 2 are optimal for
N ≥ 210 (and nearly optimal for smaller values).

A second type of special-purpose exponentiation algorithms results from the
problem of computing multiple exponentiations zi = bei for a fixed base b ∈ G.
We denote this problem by z = FixedBaseExp(b, e), where z = (z1, . . . , zN ) ∈ GN
denotes the resulting exponentiations and e = (e1, . . . , eN ) ∈ ZN

q the given ex-
ponents. For solving this problem most efficiently, two fixed-base exponentia-
tion algorithms exist with equivalent running times, the comb method by Lim
and Lee [15] and Algorithm 3.2 from [11]. We refer to them as HAC14.177 and
HLG3.2, respectively. Both of them are parametrized by two values, for example
1 ≤ k ≤ ` (window size) and 1 ≤ m ≤ `/k (sub-task size) in the case of HLG3.2.



The relative running time M̃k,m(`,N) of HLG3.2 is shown in Table 2. If N
tends towards infinity, we get optimal parameters k = 1 and m = `, but other-
wise the choice of k and m depends on both ` and N . For example, k = 32 and
m = 12 are optimal for ` = 3072 and N = 1000, i.e., M̃32,12(3072, 1000) = 320
group multiplications is the best possible performance in this particular case.
Further exemplary performance results are depicted in Table 3, which also shows
the benefits of special-purpose algorithms for product and fixed-base exponen-
tiation. While HLG2 performs between 5 to 9 times better than HAC14.85 for
product exponentiation, HLG3.2/HAC14.117 perform up to 25 times better than
HAC14.85 for fixed-base exponentiation.

` = 112 ` = 128 ` = 224 ` = 256 ` = 2048 ` = 3072

HAC14.85 138 1.00 157 1.00 269 1.00 306 1.00 2336 1.00 3477 1.00

HLG2 26 0.19 30 0.19 46 0.17 51 0.17 282 0.12 396 0.11

22 0.16 27 0.17 43 0.16 49 0.16 313 0.13 449 0.13 N=100

HLG3.2
14 0.10 17 0.11 29 0.11 35 0.11 225 0.10 320 0.09 N=1 000

HAC14.117
11 0.08 12 0.08 22 0.08 25 0.08 176 0.08 255 0.07 N=10 000

7 0.05 8 0.05 16 0.06 19 0.06 143 0.06 210 0.06 N=100 000

5 0.04 6 0.04 12 0.04 15 0.05 120 0.05 176 0.05 N=1 000 000

Table 3: Comparison between exponentiation algorithms. For each exponent length
` ∈ {112, 128, 224, 256, 2048, 3072}, the number of necessary group multiplications is
shown in the left column, whereas the benefit of the optimization algorithm relative to
HAC14.85 is shown in the right column. All values are either taken or derived from [11].

2.2 Batch Verification

A particular task which sometimes appears in cryptographic protocols is testing
for a batch of input triples (z1, b1, e1), . . . , (zN , bN , eN ) whether zi = beii holds for
all N instances. We denote this problem by BatchVerif(z, b, e), where z ∈ GN ,
b ∈ GN , and e ∈ ZN

q denote respective vectors of input values. The trivial
solution of computing all N exponentiations beii individually and comparing the
results with the given values zi is not the most efficient one. The small exponent
test (SET) from [2] solves BatchVerif(z, b, e) using a single equality test

ProductExp(z, s)
?
= ProductExp(b, s′) (1)

between two product exponentiations of size N , where s = (s1, . . . , sN ) is a
vector of random s-bits values si ∈ Z2s and s′ = (s′1, . . . , s

′
N ) is derived from s

and e by computing s′i = siei mod q over all N inputs.3 The bit length s of the
random exponents determines the failure probability 2−s of the test. A failed test
is one that returns true for a problem instance containing at least one zi 6= beii .

3Note that the algorithm given in [2] for solving ProductExp(z, s) is not the most
efficient one. Replacing it by HLG2 improves the reported running times significantly.



Note that one product exponentiation deals with (short) exponents of length s
and one with (long) exponents of length ` = ‖q‖. Therefore, the relative running
time for solving BatchVerif(z, b, e) in this ways corresponds to

M̃m1,m2
(s, `,N) = M̃m1

(s,N) + M̃m2
(`,N)

group multiplications per input (plus one modular multiplication in Zq for com-
puting s′i = siei mod q). Optimal algorithm parameters m1 and m2 can be se-
lected from Table 1 independently of N , for example m1 = 5 and m2 = 9 for
solving a problem with parameters s = 128 and ` = 3072. In this particular
case, we obtain a total of 30 + 396 = 426 multiplications in G (see Table 3) to
perform the full batch verification. Compared to a naive implementation, this is
approximately 8.5 times more efficient.

The small exponent test as described in [2] is defined for the special-case of a
single fixed base b, in which the right-hand side of (1) can be replaced by a single
exponentiation Exp(b, s′) for s′ =

∑N
i=1 s

′
i mod q. Another special case arises in

problems with a fixed exponent e, where the right-hand side of (1) becomes
equivalent to Exp(ProductExp(b, s), e). As shown in [13], these techniques can
also be used in combination, for example if input values

z = (z1, . . . , zn), b = (b1, . . . , bN ), b̂ = (b̂, . . . , b̂), b̃ = (b̃1, . . . , b̃N ),
e = (e1, . . . , eN ), ê = (ê1, . . . , êN ), ẽ = (ẽ, . . . , ẽ),

are given (b̂ and ẽ are fixed) and the problem consists in testing zi = beii b̂
êi b̃ẽi

for all 1 ≤ i ≤ N . We denote this particular combination of batch verifica-
tion problems, which we will encounter in Section 3 in exactly this form, by
BatchVerif(z, b, e, b̂, ê, b̃, ẽ). Solving it using the small exponent test means to
perform the following equality test:

ProductExp(z, s)
?
= ProductExp(b, s′) · Exp(b̂, s′) · Exp(ProductExp(b̃, s), ẽ).

Based on the algorithms described in Section 2.1, the relative running time of
this combined test consists of

M̃k,m1,m2
(s, `,N) = 2M̃m1

(s,N) + M̃m2
(`,N) +

2Mk(`) + 2

N

multiplications per input, which converges towards 2M̃m1
(s,N) + M̃m2

(`,N)
when N increases. In the example from above with s = 128 and ` = 3072, we
get a total of 2 · 30+396 = 456 multiplications, which is approximately 23 times
more efficient than computing 3N exponentiations without optimization.

Applications of the small exponent test are based on two critical precondi-
tions [3]. First, G must be a prime-order group, which implies for example that
the small exponent test is not applicable to the group Z∗p of integers modulo p,
which is of order p−1. Second, every zi from z must be an element of G. For ar-
bitrary prime-order groups G, group membership zi ∈ G can be tested by zqi = 1
using one exponentiation with an exponent of maximal length ` = ‖q‖. But by
executing this test N times for all values z1, . . . , zN , the potential performance
benefit of the small exponent test is no longer available.



2.3 Efficient Group Membership Tests for Quadratic Residues

Group membership in elliptic curves can be tested efficiently by checking if a
given point satisfies the curve equation. For the subgroup Gq ⊂ Z∗p of integers
modulo a safe prime p = 2q + 1, which is the most commonly used crypto-
graphic setting for the ElGamal encryption scheme in voting protocols, group
membership zi ∈ Gq can be tested more efficiently using the Jacobi symbol
( zip ) ∈ {−1, 0, 1}. For ` = 2048, common O(`2) time algorithms for computing
the Jacobi symbol run approximately twenty times faster than modular exponen-
tiation [16]. This largely solves the above-mentioned group membership problem
of the short exponent test in this particular setting.

To avoid different sorts of attacks, group membership tests are also required
in many other cryptographic primitives. Performing such tests in a systematic
way over all input values is therefore a best practice in the design and implemen-
tation of cryptographic applications. For very large inputs, even efficient Jacobi
symbol algorithms may then become a target for performance optimizations.

Since elements of Gq are quadratic residues modulo p, we can reduce the
cost of the group membership test to a single modular multiplication in Z∗p. The
improvement is based on the observation that every quadratic residue x ∈ Gq

has two square roots in Z∗p, whereas quadratic non-residues x 6∈ Gq have no
square roots in Z∗p. Group membership x ∈ Gq can therefore be demonstrated
by presenting one of the two square roots

√
x = ±x

q+1
2 mod p as a membership

witness and by checking that
√
x

2 ≡ x (mod p) holds. Thus, provided that such
a membership witness is available “for free”, group membership can be tested
using a single modular multiplication.4

To implement this idea in practice, elements x ∈ Gq can be represented as
pairs x̂ = (

√
x, x), for which group membership can be tested as described above

using a single multiplication.5 For such pairs, multiplication ẑ = x̂ŷ, exponenti-
ation ẑ = x̂e, and computing the inverse ẑ = x̂−1 can be implemented based on
corresponding computations on the square roots:

√
xy ≡

√
x
√
y (modp),

√
xe ≡

√
x

e
(modp),

√
x−1 ≡

√
x
−1

(modp).

Thus, only a single additional multiplication z =
√
z
2
mod p is needed in each

case to obtain the group element itself. In such an implementation, it is even
possible to compute groups elements only when needed, for example before de-
coding a decrypted ElGamal message or for equality tests. In this way, addi-
tional multiplications and can be avoided almost entirely during the execution

4While group membership testing based on square roots has been used in protocols
for outsourcing modular exponentiations to malicious servers [4], we are not aware of
any proposal or implementation of this technique as a general method for representing
elements of Gq ⊂ Z∗p. However, given the simplicity of the approach, we can not exclude
it from being folklore.

5To disallow the encoding of an additional bit of information into the square root
representation of a quadratic residue, we suggest normalizing the representation by
taking always either the smaller or the larger of the two values.



of a cryptographic protocol, during which all computations are conducted on
the square roots. Restricting the representation to the square root is also useful
for avoiding additional memory and communication costs. In other words, group
membership in Gq ⊂ Z∗p can be guaranteed at almost no additional cost. This
maximizes the benefit of the small exponent test in batch verification.

3 Optimizing the Performance of Shuffling

A cryptographic shuffle transforms a list of input ciphertexts e = (e1, . . . , eN )
into a permuted list ẽ = (ẽ1, . . . , ẽN ) of re-encrypted output ciphertexts, in
which every ẽj = ReEncpk(ei, r̃i), j = ψ(i), is a re-encryption of exactly one ei
under the given public key pk. The whole shuffle operation can be denoted by

ẽ = Shufflepk(e, r̃, ψ),

where r̃ = (r̃1, . . . , r̃N ) denotes the vector of re-encryption randomizations and
ψ ∈ ΨN the randomly selected permutation (which determines the order of the
elements in ẽ). For proving the correctness of ẽ relative to e, a non-interactive
zero-knowledge proof of knowledge of r̃ and ψ must be generated along with ẽ.
Such a shuffle proof

π = NIZKP [(r̃, ψ) : ẽ = Shufflepk(e, r̃, ψ)]

can be constructed in various ways (see Table 1). In this paper, we only focus
on the shuffle proof by Wikström and Terelius [18,19], which is one of the most
prominent and efficient approaches in the literature. Based on the pseudo-code
algorithms from [12], we first provide a detailed list of all the exponentiations
required for generating and verifying the shuffle. We will then discuss possible
improvements in the light of the optimization techniques presented in Section 2.
The goal is to reduce the overall running times to the greatest possible extent.

3.1 Performance Analysis

The shuffle proof by Wikström and Terelius is very flexible in various aspects. It
supports different types of encryption schemes, different mathematical groups,
and different operations to be performed on each ciphertext. The Verificatum
Mix-Net implementation, for example, supports a combination of re-encryption
and decryption with a shared private key [20]. In this particular setting, the
mix-net outputs a list of decrypted plaintext messages, which correspond to the
plaintext messages included in the input ciphertexts.

In our analysis, we restrict ourselves to the classical case of performing a
re-encryption shuffle of ElGamal ciphertexts. Each ciphertext included in e is
therefore a pair ei = (ai, bi) ∈ G2 of two group elements ai = mi · pkri and
bi = gri and re-encrypting ei with a fresh randomization r̃i ∈ Zq means to
multiply it with an encryption of the identity element 1 ∈ G:

ReEncpk(ei, r̃i) = ei · Encpk(1, r̃i) = (ai, bi) · (pkr̃i , gr̃i) = (ai · pkr̃i , bi · gr̃i).



On the other hand, we do not restrict the analysis to a particular mathematical
group, i.e., the presented results are applicable to any DDH secure group. As in
Section 2, the performance is measured in number of group multiplications, i.e.,
without making a distinction between general multiplication and squaring.

Slightly modified versions of the pseudo-code algorithms GenShuffle, Gen-
Proof, and CheckProof from [12] are included in Appendix A. For better read-
ability, two sub-algorithms have been merged into GenProof and some variables
have been renamed for better consistency with the rest of the paper. To avoid
negative exponents −c in CheckProof, we have swapped all appearances of c and
−c in both algorithms. The benefit of this modification is computations with
smaller exponents. If λ denotes the security parameter and ` = ‖q‖ an appropri-
ate group size in bits, for example λ = 128 and ` = 3072, we get much smaller
exponents of length ‖c‖ = λ instead of ‖−c‖ = `. This improves the running
time of CheckProof independently of any optimization techniques.

Based on the algorithms as given in the appendix, Table 4 provides a com-
plete list of all exponentiations required for generating a cryptographic shuffle
of size N and the corresponding shuffle proof. The lengths of the involved ex-
ponents are indicated in each case. As a general rule, randomizations such as
ri or ωi are of length ` = ‖q‖, whereas challenges such as ũi are of length λ,
where λ is the security parameter of the shuffle proof. The rightmost column of
Table 4 shows the number of necessary group membership tests to conduct on
the input values. It is assumed that independent generators g, h, h1, . . . , hN ∈ G
are publicly known.

In Table 5, a similar overview of exponentiations and group membership tests
is given for algorithm CheckProof, again by distinguishing between exponents of
length ` and λ. By comparing Table 5 with Table 4, it seems that generating
and verifying a shuffle is almost equally expensive. In each case, there are ex-
actly N plain exponentiations and 3N product exponentiations with large `-bits
exponents, and roughly N plain exponentiations with small λ-bits exponents.
The main difference lies in the number of product exponentiations with small
exponents and fixed-base exponentiations with large exponents, but the total
sum of all exponentiations is almost identical (10N +5 for generating the shuffle
vs. 9N + 11 for verifying the shuffle). A major difference lies in the number of
group membership tests (2N + 1 vs. 7N + 6).

3.2 Performance Improvements

The analysis of the previous subsection give us a precise map of how to apply
the special-purpose exponentiation algorithms from Section 2.1 for improving
the performance of generating and verifying a cryptographic shuffle. Based on
this map, we can compute the total number of multiplications required for an
input size of N ElGamal ciphertext. By dividing this number by N , we obtain
relative running times for generating and verifying the shuffle, which measures
the average number of multiplications per input ciphertext. The columns in
the middle of Tables 6 and 7 show corresponding numbers for λ = 128 and
` = 3072 and λ = 128 and ` = 256, which are typical settings today for modular



Algorithm Line Computation
PLE PRE FBE

GMT
` λ ` ` b

GenShuffle 1a (ai, bi) ∈ G2 – – – – – 2N

1b pk ∈ G – – – – – 1

5 ãi ← ai · pkr̃i – – – N pk –
6 b̃i ← bi · gr̃i – – – N g –

GenProof 4 cji ← hi · grji – – – N g –
11 ĉi ← gr̂i · ĉũi

i−1 – N – N g –
15 t̂i ← gω̂i · ĉω̃i

i−1 N – – N g –
17 t1 ← gω1 – – – 1 g –
18 t2 ← gω2 – – – 1 g –
19 t3 ← gω3 ·

∏N
i=1 h

ω̃i
i – – N 1 g –

20 t4,1 ← pk−ω4 ·
∏N

i=1 ã
ω̃i
i – – N 1 pk –

21 t4,2 ← g−ω4 ·
∏N

i=1 b̃
ω̃i
i – – N 1 g –

Total 10N + 5 2N + 1

Table 4: Overview of exponentiations and group membership tests in the shuffle and
shuffle proof generation algorithms. The column PLE lists the number of plain expo-
nentiations, the column PRE the number of product exponentiations, the column FBE
the number of fixed-based exponentiations, and the column GMT the number of group
membership tests for an input size of N ciphertexts, a group G of size ` = ‖q‖ bits,
and a security parameter λ.

groups respectively elliptic curves. Compared to the numbers for an unoptimized
implementation shown in the left hand columns, generating the shuffle becomes
up to 5.5 times and verifying the shuffle up to 3.5 times more efficient. Generally,
the speed-up for ` = 256 is slightly smaller than for ` = 3072, and it grows
moderately for an increasing N .

Given the potential of product and fixed-base exponentiation algorithms (be-
tween 10 and 20 times more efficient for ` = 3072, see Table 3), the maximum
performance improvement has not yet been achieved. The most problematic ex-
ponentiations in Tables 4 and 5 are the 2N plain exponentiations, and among
them especially those with exponents of length `. Apparently, computing them
without optimizations creates a significant bottleneck that prevents even better
performances. Here is a proposal for removing the bottleneck in all cases:
– The second exponentiation in the assignment t̂i ← gω̂i · ĉω̃i

i−1 in Line 15 of
GenProof is based on the commitment chain ĉ0, ĉ1, . . . , ĉN , which is defined
recursively by ĉ0 ← h in Line 8 and ĉi ← gr̂i · ĉũi

i−1 in Line 11. By raising
the recursion to the exponent, we can reformulated this definition into ĉi ←
gRi · hUi , where exponents Ri = r̂i + ũiRi−1 mod q and Ui = ũiUi−1 mod q
are computed recursively from R0 = 0 and U0 = 1 in time linear to N . By
changing Line 11 accordingly, we obtain two fixed-base exponentiations—one
for base g and one for base h—with exponents of length ` = ‖q‖.

– Based on the same exponents Ri and Ui, we can also change Line 15 of
GenProof into t̂i ← gR

′
i· hU ′

i with exponents R′i = ω̂i + ω̃iRi−1mod q and



Algorithm Line Computation
PLE PRE FBE

GMT
` λ ` λ ` b

CheckProof 1a t ∈ G × G × G × G2 × GN – – – – – – N + 5

1b c ∈ GN , ĉ ∈ GN – – – – – – 2N

1c (ai, bi) ∈ G2, (ãi, b̃i) ∈ G2 – – – – – – 4N

1d pk ∈ G – – – – – – 1

7 ĉ← ĉN · h−u – – – – 1 h –
8 c̃←

∏N
i=1 c

ui
i – – – N – – –

9 ã←
∏N

i=1 a
ui
i – – – N – – –

10 b̃←
∏N

i=1 b
ui
i – – – N – – –

13 t̂′i ← ĉ c
i · gŝi · ĉs̃ii−1 N N – – N g –

14 t′1 ← c̄ c · gs1 – 1 – – 1 g –
15 t′2 ← ĉ c · gs2 – 1 – – 1 g –
16 t′3 ← c̃ c · gs3 ·

∏N
i=1 h

s̃i
i – 1 N – 1 g –

17 t′4,1 ← ãc · pk−s4 ·
∏N

i=1 ã
s̃i
i – 1 N – 1 pk –

18 t′4,2 ← b̃c · g−s4 ·
∏N

i=1 b̃
s̃i
i – 1 N – 1 g –

Total 9N + 11 7N + 6

Table 5: Overview of exponentiations and group membership tests in the shuffle ver-
ification algorithm. The column PLE lists the number of plain exponentiations, the
column PRE the number of product exponentiations, the column FBE the number of
fixed-based exponentiations, and the column GMT the number of group membership
tests for an input size of N ciphertexts, a group G of size ` = ‖q‖ bits, and a security
parameter λ.

U ′i = ω̃iUi−1mod q, which again consists of two fixed-base exponentiations
with exponents of length `. Therefore, all plain exponentiations from al-
gorithm GenProof can be replaced by fixed-base exponentiations. Together
with GenShuffle, we obtain a total of 3N product exponentiations and 7N+5
fixed-base exponentiations (N + 1 for pk, 4N + 4 for g, 2N for h) for gener-
ating the shuffle and its proof. All exponents are of length ` = ‖q‖.

– The two plain exponentiations of algorithm CheckProof are both contained
in the assignment t̂′i ← ĉ ci · gŝi · ĉ

s̃i
i−1 of Line 13. The purpose of computing

the values t̂′i is to compare them in Line 19 with the values t̂i included in the
proof. They must all be equal for the proof to succeed. Instead of conducting
explicit equality tests as suggested in algorithm CheckProof, it is also possible
to apply the batch verification method from Section 2.2.6 Note that the
given use case in Line 19 corresponds precisely to the particular combination
of batch verification problems discussed at the end of Section 2.2, which
tests three exponentiations simultaneously (one with a fixed base g, one
with a fixed exponent c, and one general case). For t̂ = (t̂1, . . . , t̂N ), ĉ =

6The idea of applying batch verification to shuffle proofs is due to Groth [9].



Not optimized Partly optimized Fully optimized
Generate Verify Generate Verify Generate Verify N

31622 1.00 18221 1.00 6742 0.21 5406 0.30 3908 0.12 1861 0.10 100

31465 1.00 18027 1.00 6264 0.20 5233 0.29 3230 0.10 1740 0.10 1 000

31450 1.00 18007 1.00 5971 0.19 5162 0.29 2817 0.09 1730 0.10 10 000

31448 1.00 18007 1.00 5782 0.18 5117 0.28 2546 0.08 1729 0.10 100 000

31448 1.00 18005 1.00 5640 0.18 5083 0.28 2346 0.07 1729 0.10 1 000 000

Table 6: Comparison of relative running times for generating and verifying a crypto-
graphic shuffle in a typical setting for modular groups with λ = 128 and ` = 3072.

Not optimized Partly optimized Fully optimized
Generate Verify Generate Verify Generate Verify N

2926 1.00 2184 1.00 822 0.28 768 0.35 445 0.15 374 0.17 100

2913 1.00 2161 1.00 763 0.26 742 0.34 362 0.12 356 0.16 1 000

2911 1.00 2158 1.00 725 0.25 731 0.34 308 0.11 354 0.16 10 000

2911 1.00 2158 1.00 699 0.24 725 0.33 270 0.09 354 0.16 100 000

2911 1.00 2158 1.00 683 0.23 721 0.33 248 0.09 354 0.16 1 000 000

Table 7: Comparison of relative running times for generating and verifying a crypto-
graphic shuffle in a typical setting for elliptic curves with λ = 128 and ` = 256.

(ĉ1, . . . , ĉN ), and ĉ0 = (ĉ0, . . . , ĉN−1), we can therefore perform

BatchVerif(t̂, ĉ0, s̃, g, ŝ, ĉ, c)

using the combined small exponent test from Section 2.2, which requires
three product exponentiations of size N (one with exponents of length ` and
two with exponents of length λ), and two single plain exponentiations. This
implies that CheckProof can be implemented using nine product exponenti-
ations of size N (four with exponents of lengths ` and five with exponents of
length λ) and 13 single exponentiations (which become negligible for large
problem instances).

Rewriting GenProof and CheckProof using these optimization leads to the per-
formance results shown in the right hand columns of Tables 6 and 7. Note that
the change in CheckProof increases the probability for an invalid proof to pass
the verification by 2−s (see Section 2.2). To preserve the soundness of the proof,
it is therefore important to select s in accordance with the security parameter
λ. For s = λ and ` = 3072, a speed-up by a factor of 10 and more can be ob-
served for both generating and verifying the shuffle. For s = λ and ` = 256, the
speed-up is slightly more moderate, but still significant.

With the above optimizations, it seems that the potential for improvements
based on special-purpose exponentiations algorithms has been exhausted. In
groups Gq ⊆ Z∗p of integers modulo a safe prime p = 2q + 1, an area for further



improvements are the group membership tests, which need to be conducted on
all group elements included in the algorithm inputs (we mentioned earlier that
membership tests in elliptic curves are almost for free). Recall from Tables 4
and 5 and from Section 2.3 that an ElGamal shuffle of size N requires 2N + 1
such membership tests for generating and 7N + 6 tests for verifying the shuffle.

If membership testing z ∈ Gq is implemented naïvely by computing zq mod p
using plain modular exponentiation, then the added cost of this test completely
outweighs the performance improvements achieved so far. Therefore, we assume
that any practical implementation at leasts includes an algorithm for computing
the Jacobi symbol, which is up to 20 times faster than plain modular expo-
nentiation for 3072-bits integers. Given that HAC14.85 requires 3477 modular
multiplications, we can estimate the cost of computing the Jacobi symbol as
equivalent to approximately 175 multiplications. Therefore, 2·175+1 = 351 and
7·175+ 6 = 1231 multiplications need to be added to the cost of generating and
verifying the shuffle, respectively. Compared to the numbers from Table 6, this
demonstrates that the cost for computing Jacobi symbols is not negligible, espe-
cially for verifying a proof. For large N , we obtain a total of 1729+1231 = 2960
multiplications per input ciphertext, which is approximately 1.7 less efficient
than without performing the membership test. This loss can be avoided by im-
plementing the membership test based on the membership witness method from
Section 2.3, which reduces the relative cost to a single multiplication.

4 Conclusion

Based on recent work on special-purpose algorithms for computing exponentia-
tions, we have shown in this paper that generating and verifying a cryptographic
shuffle can be accelerated by approximately one order of magnitude. A combi-
nation of optimization techniques is necessary to obtain the best possible per-
formance. Given the importance of shuffling in voting protocols and the high
computational costs of the available methods, this improvement is significant
for practical implementations. We have shown how to achieve this benefit for
Wikström’s shuffle proof, but we expect similar benefits for other methods.

Many of the algorithms and methods discussed in this paper are not yet
available in libraries for large integer arithmetic. We were therefore not able to
evaluate the performance of the proposed method on real machines. But recent
work on similar topics has shown that theoretical performance estimations based
on counting multiplications can often be confirmed rather easily in practical
experiments. Implementing all algorithms and conducting such experiments is
an area for further research.

Further performance improvements can be achieved by executing the expo-
nentiation tasks in parallel on multiple cores or multiple machines. There are
many ways of implementing parallelization into a shuffling procedure, but find-
ing a clever way of distributing the total cost optimally to all available resources
is a complex problem. This is another area for further research.
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A Pseudo-Code Algorithms

1 Algorithm: GenShuffle(e, pk)

Input: ElGamal ciphertexts e = (e1, . . . , eN ), ei = (ai, bi) ∈ G2
Encryption key pk ∈ G

2 ψ ← GenPermutation(N)
3 for i = 1, . . . , N do
4 r̃i ∈R Zq

5 ãi ← ai · pkr̃i
6 b̃i ← bi · gr̃i
7 ẽi ← (ãi, b̃i)

8 ẽ← (ẽj1 , . . . , ẽjN )
9 r̃ ← (r̃1, . . . , r̃N )

10 return (ẽ, r̃, ψ) // ẽ ∈ (G2)N , r̃ ∈ ZN
q , ψ ∈ ΨN

Algorithm A.1: Performs a re-encryption shuffle to a given list of ElGamal
ciphertexts.



1 Algorithm: GenProof(e, ẽ, r̃, ψ, pk)

Input: ElGamal ciphertexts e = (e1, . . . , eN ), ei = (ai, bi) ∈ G2
Shuffled ElGamal ciphertexts ẽ = (ẽ1, . . . , ẽN ), ẽi = (ãi, b̃i) ∈ G2
Re-encryption randomizations r̃ = (r̃1, . . . , r̃N ), r̃i ∈ Zq

Permutation ψ = (j1, . . . , jN ) ∈ ΨN

Encryption key pk ∈ G
2 for i = 1, . . . , N do
3 rji ∈R Zq

4 cji ← hi · grji

5 c = (c1, . . . , cN )
6 for i = 1, . . . , N do
7 ui ← Hash((e, ẽ, c), i)

8 ĉ0 ← h
9 for i = 1, . . . , N do

10 r̂i ∈R Zq, ũi ← uji

11 ĉi ← gr̂i · ĉũi
i−1

12 ĉ = (ĉ1, . . . , ĉN )
13 for i = 1, . . . , N do
14 ω̂i ∈R Zq, ω̃i ∈R Zq

15 t̂i ← gω̂i · ĉω̃i
i−1

16 ω1 ∈R Zq, ω2 ∈R Zq, ω3 ∈R Zq, ω4 ∈R Zq

17 t1 ← gω1

18 t2 ← gω2

19 t3 ← gω3 ·
∏N

i=1 h
ω̃i
i

20 t4,1 ← pk−ω4 ·
∏N

i=1 ã
ω̃i
i

21 t4,2 ← g−ω4 ·
∏N

i=1 b̃
ω̃i
i

22 t← (t1, t2, t3, (t4,1, t4,2), (t̂1, . . . , t̂N ))
23 c← Hash(e, ẽ, c, ĉ, pk, t)
24 vN ← 1
25 for i = N, . . . , 1 do
26 vi−1 ← ũivi mod q

27 r ←
∑N

i=1 ri mod q, s1 ← ω1 − c · r mod q

28 r̂ ←
∑N

i=1 r̂ivi mod q, s2 ← ω2 − c · r̂ mod q

29 r̄ ←
∑N

i=1 riui mod q, s3 ← ω3 − c · r̄ mod q

30 r̃ ←
∑N

i=1 r̃iui mod q, s4 ← ω4 − c · r̃ mod q
31 for i = 1, . . . , N do
32 ŝi ← ω̂i − c · r̂i mod q, s̃i ← ω̃i − c · ũi mod q

33 s← (s1, s2, s3, s4, (ŝ1, . . . , ŝN ), (s̃1, . . . , s̃N ))
34 π ← (t, s, c, ĉ)

35 return π ∈ (G×G×G×G2×GN )× (Zq×Zq×Zq×Zq×ZN
q ×ZN

q )× GN× GN

Algorithm A.2: Generates an ElGamal shuffle proof.



1 Algorithm: CheckProof(π, e, ẽ, pk)

Input: Shuffle proof π = (t, s, c, ĉ)
− t = (t1, t2, t3, (t4,1, t4,2), (t̂1, . . . , t̂N )) ∈ G × G × G × G2 × GN
− s = (s1, s2, s3, s4, (ŝ1, . . . , ŝN ), (s̃1, . . . , s̃N )) ∈ Zq×Zq×Zq×Zq×ZN

q ×ZN
q

− c = (c1, . . . , cN ) ∈ GN , ĉ = (ĉ1, . . . , ĉN ) ∈ GN
ElGamal ciphertextes e = (e1, . . . , eN ), ei = (ai, bi) ∈ G2
Shuffled ElGamal ciphertexts ẽ = (ẽ1, . . . , ẽN ), ẽi = (ãi, b̃i) ∈ G2
Encryption key pk ∈ G

2 for i = 1, . . . , N do
3 ui ← Hash((e, ẽ, c), i)

4 ĉ0 ← h

5 c̄←
∏N

i=1 ci/
∏N

i=1 hi

6 u←
∏N

i=1 ui mod q
7 ĉ← ĉN · h−u

8 c̃←
∏N

i=1 c
ui
i

9 ã←
∏N

i=1 a
ui
i

10 b̃←
∏N

i=1 b
ui
i

11 c← Hash(e, ẽ, c, ĉ, pk, t)
12 for i = 1, . . . , N do
13 t̂′i ← ĉ c

i · gŝi · ĉs̃ii−1

14 t′1 ← c̄ c · gs1
15 t′2 ← ĉ c · gs2

16 t′3 ← c̃ c · gs3 ·
∏N

i=1 h
s̃i
i

17 t′4,1 ← ãc · pk−s4 ·
∏N

i=1 ã
s̃i
i

18 t′4,2 ← b̃c · g−s4 ·
∏N

i=1 b̃
s̃i
i

19 return

(t1 = t′1) ∧ (t2 = t′2) ∧ (t3 = t′3) ∧ (t4,1 = t′4,1) ∧ (t4,2 = t′4,2) ∧
[∧N

i=1(t̂i = t̂′i)
]

Algorithm A.3: Checks the correctness of an ElGamal shuffle proof.
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