
CHVote: Sixteen Best Practices and Lessons
Learned

Rolf Haenni, Eric Dubuis, Reto E. Koenig, and Philipp Locher

Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{rolf.haenni,eric.dubuis,reto.koenig,philipp.locher}@bfh.ch

Abstract. The authors of this paper had the opportunity to closely
accompany the CHVote project of the State of Geneva during more than
two years and to continue the project after its abrupt stop in 2018. This
paper is an experience report from this collaboration and the subsequent
project continuation. It describes the lessons learned from this project
and proposes some best practices relative to sixteen different topics. The
goal of the paper is to share this experience with the community.

1 Introduction

Developing a verifiable Internet voting system is a delicate task. While conducting
elections over the Internet seems intuitively like a simple matter of counting
votes submitted by voters, it actually defines a unique combination of difficult
security and privacy problems. As a response to these problems, numerous
cryptographic protocols have been proposed to guarantee different combinations
of often conflicting security properties. While many aspects of the general problem
are solved today in theory, it turned out that transforming them into reliable
practical systems is a completely different challenge. In fact, not many projects
have been successful so far. In the Switzerland, which played a pioneering role in
the early days of Internet voting, three completely untransparent systems were
in used for pilot elections with a limited number of voters over more than a
decade. They were all black-box system with no verifiability. One of them was
the CHVote system from the State of Geneva.

1.1 Project Context

As a response to the third report on Vote électronique by the Swiss Federal
Council in 2013 and the new requirements of the Swiss Federal Chancellery [1,16],
the State of Geneva invited leading scientific researchers and security experts
to contribute to the development of their second-generation system CHVote 2.0.
In this context, a collaboration contract between the State of Geneva and the
Bern University of Applied Sciences was signed in 2016. The main goal of this
collaboration was the specification of a cryptographic voting protocol that satisfies
the new requirements to the best possible degree. The main output of this project
is the CHVote System Specification document [9], which is publicly available

at the Cryptology ePrint Archive since April 2017. In the course of the project,
updated document versions have been released in regular intervals.

In November 2018, the council of the State of Geneva announced an abrupt
stop of the CHVote 2.0 project due to financial reasons.1 This implied that with
the release of Version 2.1 of the specification document in January 2019, the
collaboration between the State of Geneva and the Bern University of Applied
Sciences came to an end. In June 2019, the State of Geneva released all the
public material that have been created during the CHVote 2.0 project, including
the Java source code.2 The implemented cryptographic protocol corresponds to
Version 1.4.1 of the specification document.

To continue the CHVote project independently of the support from the State
of Geneva, a new funding from eGovernment Switzerland has been acquired by
the Bern University of Applied Sciences in August 2019. The main goal of this
project was to release a final stable version of the specification document and
to update the cryptographic core of the protocol based on the code released by
the State of Geneva. As a first project deliverable, the current Version 3.0 of
the specification document has been released in December 2019 [9]. At the time
of writing this paper, the developed OpenCHVote software is not yet complete.
Since the project is in its final stage, the code is expected to be released soon
under a non-proprietary license.3 The general purpose of the project is to make
the achievements available to others for pursuing it further.

1.2 Goals and Paper Overview

This paper presents a retrospective view of the CHVote project over the last four
years. The paper is divided into three sections. The two main sections describe
our experience and lessons learned from our work related to the specification
document and the development of corresponding software, respectively, and the
final section discusses some general aspects of the project. The whole paper
contains our proposal for best practices on sixteen different topics. We present
these topics project in chronological order. While we think that they all have
played an important role for the success of our project, we do not claim that
the given list is complete or that all points are directly applicable to all similar
projects.

Nevertheless, we believe that our experience is worth to be shared with the
community, who may struggle with similar problems in other e-voting projects.
Sharing our experience with the community is therefore the general goal of this
paper. As such, it should been seen as an experience report, which may be helpful
in other projects as a guideline for achieving the required quality level in a shorter
amount of time. Some of the proposed best practices may even set a certain
minimal quality benchmark for e-voting projects in general.

1 For further details about the reasons for abandoning the project, we refer to the
State Council’s press statement at https://www.ge.ch/document/12832/telecharger.

2 See https://chvote2.gitlab.io
3 See https://gitlab.com/openchvote

https://www.ge.ch/document/12832/telecharger
https://chvote2.gitlab.io
https://gitlab.com/openchvote

2 Specification

Item 1: Modeling the Electoral Systems

Democracies around the world use very different electoral systems to determine
how elections and referendums are conducted. A major challenge in the design
of CHVote was to cover the variety of electoral systems that exist in the Swiss
context. On a single election day, democratic decisions are sometimes taken
simultaneously on federal, cantonal, and communal issues, with election laws
that differ from canton to canton. To cope with this complexity, we managed
to map all electoral systems into a concise and coherent electoral model that is
applicable to all possible situations. The core of this model is an election event,
which consists of several independent k-out-of-n elections, in which voters can
choose exactly k different candidates from a candidate list of size n. An election
event is therefore defined by two vectors of such values k and n.

With this simple model, we were able to cover all electoral systems from the
Swiss context with their specific properties, exceptions, and subtleties.4 Elections
of the Swiss National Council turned out to be the most complicated use case, but
by splitting them into two independent elections, one 1-out-of-np party election
and one cumulative k-out-of-nc candidate election, they fit nicely into the general
model [9, Section 2.3.2]. By reducing this complexity to essentially two public
election parameters and by instantiating them to past election events in all
regions of our country, we managed to determine upper limits kmax = 150 and
nmax = 1500 for the overall problem size.

Defining a general electoral model and keeping it as simple and coherent as
possible turned out to be a really important abstraction layer, which allowed
us to design the cryptographic protocol independently of the variety of election
use cases. The above-mentioned estimation of the maximal problem size defined
important cornerstones for judging the suitability of cryptographic techniques
and for anticipating potential performance bottlenecks. Therefore, we recommend
to carefully design a suitable model of the electoral system as early as possible in
projects like this.

Item 2: Modeling the Electorate

For a given election event in the given context of the CHVote project, an
additional complication is the possibility that voters may not be eligible in all
elections. This can happen for two reasons. First, since cantons are in charge
of organizing elections, it may happen that elections are held simultaneously in
different communes of a given canton, possibly in conjunction with cantonal and
federal elections. In such cases, voters are equally eligible for federal and cantonal
issues, but not for communal issues. Second, since non-Swiss citizens are allowed
to vote in some canton and communes, they may be part of the electorate for
cantonal or communal issues, but not for federal issues.

4 We only had to admit one exception from the general model to allow write-in
candidates in some cantons.

To map all possible cases of restricted eligibility into a general model, we
introduced in CHVote the concept an eligibility matrix, which defines for a given
electorate the eligibility of each voter in each election. By connecting this matrix
with the two vectors from the general election event model, we can derive for each
voter the number of admissible choices in each election. To ensure the correctness
of an election outcome, it is absolutely critical for all involved parties to know
these values at all times. This includes auditors performing the verification
process in the aftermath of an election. The eligibility matrix is therefore a third
fundamental public election parameter. Without taking it as additional input,
the verification of an election result can not produce a conclusive outcome.

Item 3: Cryptographic Building Blocks

Given the central role of the cryptographic building blocks in a voting protocol,
we recommend describing them in the beginning of the specification document.
This lays the grounds for the whole document, for example by introducing
respective terms and formal notations. By describing the building block next to
each other, ambiguities and conflicts in the formal notations can be eliminated
in a systematic manner. Given the overall complexity of the CHVote protocol,
finding a coherent set of mathematical symbols and using them consistently
throughout the whole document was a ongoing challenge during the project.
Providing the highest possible degree of disambiguation improves greatly the
document’s overall readability.

Another important aspect of describing the cryptographic building blocks
is to select from the large amount of related literature exactly what is needed
for the protocol. Everything can be instantiated to the specific use case and
underspecified technical details can be defined to the maximal possible degree.
Examples of such technical details are the encoding methods between integers,
strings, and byte arrays, or the method of computing hash values of multiple
inputs. Another example of an often underspecified building block is the Fiat-
Shamir transformation, which is widely applied for constructing non-interactive
zero-knowledge protocols [6]. The significance of doing these things right is
well documented [4,15]. A separate chapter on these topics helps to present all
important cryptographic aspects in a concise form.

Item 4: Cryptographic Parameters

The collection of cryptographic building blocks defines a list of cryptographic
parameters for the protocol. This list of parameters is an important input for
every participating party. In CHVote, it consists of a total of twenty parameters,
which themselves depend on four top-level security parameters [9, Section 6.3.1
and Table 6.1]. In theory, proper parameterization is fundamental for defining the
protocol’s security properties in the computationally bounded adversary model,
and in practice, proper parameterization provides the necessary flexibility for
adjusting the system’s actual security to the desired strength. Given its central
role in the security model, we recommend making the cryptographic parameters
as clear and visible as possible to everyone.

For building an even more solid basis for an actual CHVote implementation,
explicit values are specified for all cryptographic parameters. We introduced four
different security levels [9, Section 11]. Level 0, which provides only 16 bits of
security, has been included for testing purposes. Corresponding mathematical
groups are large enough for hosting small elections, but small enough to avoid
expensive computations during the tests. Providing a particular security level
for testing turned out to be very useful for the software development process.
Levels 1, 2, and 3 correspond to current NIST key length recommendations
for 80 bits (legacy), 112 bits, and 128 bits of security, respectively [2]. All
group parameters are determined deterministically, for example by deriving them
from the binary representation of Euler’s number. Applying such deterministic
procedures demonstrates that the parameters are free from hidden backdoors.

Item 5: Parties and Communication

Parties participating in a cryptographic protocol are usually regarded as atomic
entities with distinct, responsibilities, abilities, goals, and attributed tasks. In the
design of the protocol, it is important for the parties and their communication
abilities to match reality as closely as possible. In CHVote, we decided to consider
the voters and their voting devices as two separate types of parties with very
different abilities. This distinction turned out to be useful for multiple purposes.
First, it enables a more accurate adversary model, because attacks against humans
and machines are very different in nature. Second, by including the tasks of the
human voters in the abstract protocol description, it provides an accurate model
for simulating human voters in a testing environment.

If a voting protocol depends on fully trusted parties, particular care must be
applied in the design of their responsibilities and tasks. The election administrator
and the printing authority fall into this category in CHVote. In both cases, we
placed great emphasis on limiting their responsibilities to their main role in
the protocol. The printing authority, for example, only applies a deterministic
algorithm to assemble the inputs from multiple election authorities. The resulting
voting cards, which are then printed and sent to the voters, are the only output
of this procedure. The procedure itself can be executed in a controlled offline
environment. After terminating this task, the printing authority is no longer
involved in the protocol, i.e., all its resources can be freed for other tasks. In
the aftermath of an election, the voting cards of all participating voters can be
reconstructed from the publicly available information. In this way, possible frauds
or failures by a corrupt printing authority can be detected. It also means that
the printing authority does not need to protect any long-term secrecy.

The definition of the parties in the abstract protocol model includes a descrip-
tion of their communication abilities. Properties of corresponding communication
channels need to be specified, again in close accordance with a possible real-world
setting. In CHVote, several authenticated and one confidential communication
channel are needed to meet to protocol’s security requirements [9, Figure 6.1].
This implies the existence of a public-key infrastructure (PKI), which needs to be
precisely specified as part of the communication model. To minimize the size of

the PKI and the resulting key management overhead, we recommend keeping the
number of participating parties (except the voters) as small as possible. Ideally,
this PKI can be mapped one-to-one into an implementation of the system.

Item 6: Protocol Structure and Communication Diagrams

A precise and comprehensive description of the voting protocol is the most
fundamental system design output. To cope with the overall complexity, we
divided the CHVote protocol into three phases and a total of ten sub-phases. We
drew protocol diagrams for each of these sub-phases. A portion of one of these
diagrams is shown in Figure 1. Each diagram shows the involved parties, the
relevant elements of the acquired knowledge, the messages exchanged between
the parties, and all conducted computations. The description of the computations
involves calls to algorithms, which are given in a separate section (see Item 11).
To optimally connect these diagrams with the remaining parts of the document,
we strictly applied our consistent set of mathematical notations and symbols (see
Item 3). Keeping these diagrams up-to-date and ensuring their correctness and
completeness was a constant challenge during the protocol design. Given their
fundamental role in the whole system design, we recommend spending sufficient
effort to achieve the best possible result. We see the communication diagrams of
the protocol as the core of the system’s master plan, which does not permit any
lack of clarity or unanswered questions.

Fig. 1: Exemplary communication diagram: vote casting sub-phase (first part).

Item 7: Pseudo-Code Algorithms

To push the given amount of technical details to the limit, we decided in an early
stage of the CHVote project to provide a full set of pseudo-code algorithms for

every computational task in the protocol [9, Section 8]. The current version of the
protocol consists of a total of 79 algorithms and sub-algorithms for very different
purposes, including primitives for converting basic data types, for computing hash
values of complex mathematical objects, or for generating digital signatures. A
large portion of the algorithms deals with the core of the CHVote protocol, which
realizes a method for transferring verification codes obliviously to the voters in
a distributed manner [8]. Other algorithms describe the verifiable mix-net and
the distributed decryption process [10,12]. By maintaining the consistent set of
mathematical symbols and notation, this section of the specification document
is smoothly integrated into the big picture of the cryptographic protocol. A
tremendous amount of initial work, re-factoring, and housekeeping was necessary
to reach the stability of the current set of algorithms. Like in regular code, we
applied certain pseudo-code style guides to achieve a maximally consistent result.
In Figure 2, the algorithm for generating a ballot is given as an example.

Fig. 2: Exemplary pseudo-code algorithm: ballot generation.

To the best of our knowledge, enhancing the specification document of an
e-voting system with a complete set of pseudo-code algorithms was a novelty
in 2017—and still is today. Our experience with this approach is very positive
in almost every respect. First, it added an additional layer to the protocol
design, which created an entirely new perspective. Viewing the protocol from
this perspective allowed us to recognize certain problems in the protocol design
at an early stage. Without detecting them by challenging the protocol from the
pseudo-code perspective, they would have come up later during code development.

Another positive effect of releasing pseudo-code algorithms in an early version
of the specification document was the possibility of giving third parties the oppor-

tunity to inspect, analyze, or even implement the algorithms (see Item 15). Within
a few months, we received feedback from two different implementation projects
in different programming languages—from the CHVote developers in Geneva and
from students of ours [13,14]. This feedback was useful for further improving the
quality of the specification document, but more importantly, it demonstrated that
we managed to considerably reduce the complexity of developing the core tasks
of the protocol in a suitable programming language. Our students, for example,
who had only little experience in developing cryptographic applications, managed
to fully implement all protocol algorithms from scratch in less than four months
time. The resulting code from these projects also demonstrated how to almost
entirely eliminate the error-prone gap between code and specification. This gap is
a typical problem in comparable projects, especially when it comes to check the
correctness of the code by external auditors. Without such a gap, auditors can
enforce the focus of their inspection to software-development issues. In the light of
these remarks, we learned in this project that providing pseudo-code algorithms
defines an ideal interface between cryptographers and software developers.

Item 8: Usability and Performance

During the design of the CHVote protocol, we realized that parts of the overall
complexity can be left unspecified without affecting the protocol’s security proper-
ties. We separated some issues that only affect the usability or the performance of
the system from the core protocol and discussed them in separate sections.5 The
general idea is to identify aspects that can be implemented in a real system or in a
certain way, but with no obligation to do so. The benefit of separating them from
the core protocol is a higher degree of decoupling in the specification document,
which permits discussing corresponding aspects independently of each other. An
example of such an aspect is the strict usage of unspecified alphabets for all the
codes delivered or displayed to the voters [9, Section 11.1]. Since the actual choice
of the alphabets only affects usability (not security), it is something that can be
discussed from a pure usability perspective. The situation is similar for various
performance improvements, which are optional for an actual implementation. By
studying them in a more general context and by publishing the results, our work
generated valuable side-products [10,11].

3 Implementation

Item 9: Mathematical Library

The languages of mathematicians and computer scientists are fairly similar
in many respects, but there are also some fundamental differences. One such
difference comes from the stateless nature of most mathematical objects, which
is very different from mutable data structures in imperative or object-oriented
programming languages such as Java. Other differences stem from established

5 The performance section of the specification document is currently under construction.
It will be included in one of the next releases.

conventions. One example of such a convention is the index notation for referring
to the elements of a list, vector, or matrix, which usually starts from from
1 in mathematics and from 0 in programming. If a complex cryptographic
protocol needs to be translated into programming code, this difference makes
the translation process error-prone.

To minimize in our CHVote implementation the difference between specifi-
cation and code, we introduced a Java library for some additional immutable
mathematical objects. The core classes of this library are Vector, Matrix, Set,
ByteArray, Alphabet, and Tuple (with sub-classes Pair, Triple, . . .). All of
them are strictly generic and immutable. Applying generics in a systematic way
greatly improves type-safety, for example in case of complex nested types such as

Triple<BigInteger, Vector<String>, Pair<Integer, ByteArray>>.

Working with immutable objects has many advantages. They are easier to design,
they can always be reused safely, and testing them is much easier [5, Page 80].
String and BigInteger are examples of given immutable classes in Java. In our
mathematical library, we adopted the convention of accessing the elements of a
vector of size n with non-zero indices i ∈ {1, . . . , n}, and similarly for matrices
and tuples. This delegates the translation between different indexing conventions
to theses classes and therefore eliminates the error-proneness of this process.
It also creates a one-to-one correspondence between indexing variables in the
specification and the code, which is beneficial for the overall code readability.

In our experience of implementing the CHVote protocol, the mathematical
library turned out to be a key component for achieving the desired level of code
quality in a reasonable amount of time. Given its central role in all parts of the
system, we put a lot of effort into performance optimizations, rigorous testing,
and documentation. We highly recommend the creation and inclusion of such a
library in similar projects.

Item 10: Naming Conventions

Most programming languages have a well-established set of naming conventions.
Generally, software developers are advised to “rarely violate them and never
without a very good reason” [5, Page 289]. Not adhering to the conventions
usually lowers the code readability and makes code maintenance unnecessarily
complicated, especially if multiple developers are involved. In some situations,
deviations from common conventions may even lead to false assumptions and
programming errors. In Java, the naming convention for variables, fields, and
method parameters is to use a connected sequence of words, with the first
letter of each subsequent word capitalized (a.k.a. “camel case”), for example
maxVoterIndex. Abbreviations such as max or single letters such as i are allowed,
as long as their meaning in the given context remains clear.

In our implementation of the cryptographic protocol, we decided to deviate
from general Java naming conventions. To achieve our goal of diminishing the
gap between specification and code to the maximal possible degree, we decided to
adopt the mathematical symbols from the protocol specification as precisely as
possible in the code. This includes defining upper-case variable names in Java such

as Set<Integer> X for a set X of integers. In such cases, we prioritized project-
internal naming consistency over general Java naming conventions. Tagged,
boldface, or Greek variable names are spelled out accordingly, for example
α̂ij as alpha hat ij or k′ as bold k prime. We strictly applied this pattern
throughout all parts of the code. Code that is written in this way may look quite
unconventional at first sight, but it turned out to be a key element for making
the Java code look almost exactly the same as the pseudo-code. As an example,
consider our implementation of the algorithm GenBallot in Figure 3, which closely
matches with the pseudo-code from Figure 2.

Fig. 3: Exemplary Java code: ballot generation.

Item 11: Implementation of Pseudo-Code Algorithms

We already discussed our view of the pseudo-code algorithms as an ideal interface
between cryptographers specifying the protocol and software developers imple-
menting corresponding code (see Item 7). In such a setting, the implementation
of the algorithms inherently defines an important bottom layer of the whole
system architecture. To strengthen the overall clarity in our implementation of the
algorithms, we decided the create separate utility class for all top-level algorithms.
Each of them contains exactly one static method run(<args>), which implements
the algorithm (plus static nested classes for all sub-algorithms), for example
GenBallot.run(<args>) for the algorithm GenBallot. This way of structuring

the algorithm module establishes direct links to the specification document. These
links are clearly visible by inspecting the project’s package structure. A section
of this package structure is shown in Figure 4.

Fig. 4: Package structure of static utility classes for top-level algorithms.

Given the central role of the protocol algorithms for the whole system, we
put extra care and effort into developing this part of the code. To obtain the
best possible code consistency, we defined a set of project-internal coding style
guidelines and applied them strictly to all algorithms. Each algorithm went
through an internal reviewing and testing process over multiple rounds, which
involved different persons according to the Four Eyes Principle. The result is
a consistent set of Java methods that are perfectly aligned with the pseudo-
code algorithms from the specification. The example shown in Figures 2 and 3
demonstrates how precisely the algorithms have been translated into code.

We see perfect alignment between specification and code as a quality criterion
of highest priority. This implies that even the smallest change in either the
specification or the code needs to be updated immediately on the other side.
The general idea here is to view them as the same thing. This view enables
third-party auditors that are familiar with the naming conventions and coding
style guidelines to check the translation from specification to programming code
at minimal costs. We believe that auditing the implementation of the algorithms
remains a diligent (but mostly routine) piece of work, which does not necessarily
require the involvement of cryptographic experts.

Item 12: Parameter Validity Checks

An important aspect of the proposed way of implementing the protocol algorithms
is the introduction of systematic validity checks of all input parameters. These
checks complement the built-in type safety obtained from strictly using the
generic mathematical library (see Item 9). The domains of all input parameters

are specified in the pseudo-code algorithms, for example X ∈ A`X
X in GenBallot

for a string of characters from the alphabet AX of length `X , which translates
into the following line of Java code (see Figure 3, Line 36):

Set.Strings(params.A X, params.ell X).contains(X)

Provided that these checks are sufficiently strong for detecting all possibilities of
invalid parameters—or invalid combinations of parameters—of a given algorithm,
they ensure that the algorithm always outputs a meaningful result. In case of a
failed check, it is clear that something else must have gone wrong, for example
that a message with a corrupt content has been received or that some stored data
has been modified. Every failed check therefore indicates some deviation from a
normal protocol run. This is the reason for implementing them in a systematic
way for all top-level algorithms (sub-algorithms do not require such checks).

To minimize the overhead of performing these checks each time an algorithm
is called, we managed to entirely eliminate expensive computations such as mod-
ular exponentiations. To efficiently perform membership tests x ∈ Gq for the
set Gq ⊂ Z∗p of quadratic residue modulo a safe prime p = 2q + 1, we imple-
mented the membership witness method proposed in [10]. The corresponding class
QuadraticResidue, which realizes this test with a single modular multiplication,
is part of our mathematical library. In Figure 3, the parameter pk is of that type,
and its membership test is conducted in Line 38.

Item 13: Implementation of Protocol Parties

To implement the protocol based on the algorithms, we designed a software
component for every involved party. These components share some code for
various common tasks, but otherwise they are largely independent. For the
design of each party, we derived a state diagram from the protocol description in
the specification document. This diagram defines the party’s behavior during a
protocol run. Typically, receiving a message of certain type triggers the party
to perform a transition into the next state. The transition itself consist of
computations and messages to be sent to other parties. The computations, which
we call tasks, can be implemented by calling corresponding protocol algorithms.

The left-hand side of Figure 5 shows the UML state diagram of the printing
authority (printer), which consists of two states SP1 and SP2 and one error
state EP1. In SP1, the printer expects messages of type MAP1 and MEP1. If all
messages are received, the transition into SP2 (or EP1) is triggered. This involves
computing task TP1 and sending two types of messages MPV1 and MAX1. The
error state EP1 is reached in case of an exception of type AE (algorithm exception)
or TE (task exception). This diagram represents the printer’s view of the printing
sub-phase [9, Protocol 7.2], which is the only sub-phase in which the printer
is active. Similar state diagrams exist for all other parties and sub-phases. We
defined further naming conventions and strictly applied them to all tasks and
message types.

Modeling the parties using the (extended) state machine formalism turned out
to be the ideal approach for structuring the parties’ implementations in the most
natural way. It also allowed us to apply the state pattern, one of the well-known

“Gang of Four” design patterns [7, Page 305]. This made our implementation
very transparent from a general software-engineering perspective. The right-hand
side of Figure 5 shows a section of the package structure, which illustrates for
example that the party class Printer depends on three state classes SP1, SP2,
and EP1, and one task class TE1. Every other party is implemented in exactly
this way. Every task and every message type is connected to one of the sub-phase
diagrams in the protocol specification, and vice versa.

Using the state pattern, we achieve close correspondence between specification
and code also on the abstraction layer representing the parties. Again, we see
the code and the specification related to the parties as essentially the same
things, which means that the slightest change on one side needs to be updated
immediately on the other side. In this way, we tried to achieve a similar level
of structural clarity and code quality as for the algorithm implementation. The
state pattern was also useful for establishing the flexibility of running multiple
election events simultaneously (possibly using different protocol versions).

IE [MAP1 all MEP1]

TP3

[ok]

 [AE]

send MPV1

send MPX1

SP2

EP1

 MAP1 MEP1

TP1 TP2

trigger IEtrigger IE

SP1

Fig. 5: State diagram of the printer (left) vs. package structure of party classes (right).

Item 14: Cryptographically Relevant Code

Providing code for all algorithms and all parties concludes the implementation of
the cryptographically relevant part of the protocol. This is where flaws in the code
can cause critical errors or vulnerabilities. Generally, we recommend structuring
the software design into cryptographically relevant and cryptographically irrelevant
components and to link them over suitable interfaces. Our current implementation
of the CHVote protocol is limited to the cryptographically relevant part of the
system, but we provide the required interfaces, for example for connecting our
code to concrete high-performance messaging and persistence services.

For testing purposes, we only implemented these interfaces in a rudimentary
way, but this turned out to be sufficient for simulating even the most complex
election use case from top to bottom. Such a simulation can be conducted on a
single machine using any common development environment, i.e., no complex
installation of a distributed test environment over multiple servers is required.
This is an efficient environment for running all sorts of functional tests with a clear
focus on the cryptographic protocol. With almost no communication overhead, it
is also ideal for analyzing and optimizing the overall protocol performance. A
precondition for establishing a complete test run is the implementation of all
protocol parties, including the (human) voters. Even if corresponding code will
obviously not be included in a real-world deployment of the system, we see it as
an indispensable component of our implementation.

Given its central role in the overall security of the system, we tried to
make the cryptographically relevant part of the code accessible to the broadest
possible audience. For that, we decided to avoid dependencies to complex third-
party libraries or software frameworks as far as possible. We only admitted two
dependencies to the widely used native GMP library for efficient computations
with large numbers and to the Spock framework for enabling data-driven tests.
Both libraries are almost entirely invisible in our implementation, i.e., there is
no need to familiarize reviewers with these technologies (except for reviewing the
tests). Generally, we see complex frameworks based on annotation, reflection, or
injection mechanisms as unsuited for developing cryptographically relevant code.
They are great for implementing enterprise software components at minimal
costs, but they often tend to obscure the general program flow. This reduces the
overall code readability and makes static code analysis more difficult.

4 Project Management

Item 15: Transparency

We started this project from the beginning with the mindset of maximal trans-
parency. At an early stage of the project in 2017, we published the first version
of our specification document [9]. At that time, we had already published a
peer-reviewed paper describing the cryptographic core of the protocol [8]. The
feedback that we received, mostly from members of the e-voting community,
was very useful for improving the protocol and its security properties. The most
important feedback came from Tomasz Truderung on April 19, 2017, who found
a subtle but serious flaw in the construction of our protocol. This flaw had been
overlooked by the reviewers of the published paper. After a few weeks, we were
able fix the problem to a full extent and update the protocol accordingly. In the
meantime, the success of the entire project was at stake.

We recall this anecdote here for making two important points. First, releasing
specification documents of an e-voting project usually launches a public exam-
ination process in the community. The outcome of this process is sometimes
unpredictable, but the received feedback has the potential of greatly improving
the quality of the protocol. At the time of writing this document, we have not yet

released the source code for public examination, but we expect a similar amount
of interest and feedback from the community. Second, a cryptographic protocol
without formal security definitions and rigorous proofs provides not a sufficiently
solid foundations for building a system. In CHVote, a different group of academics
was contracted by the State of Geneva to perform this task. The outcome of
this sister project was released in 2018 [3]. The high quality of their work leads
one to suppose that the above-mentioned flaw would have been detected in their
analysis. Unfortunately, their report has not yet been updated to the current
version of the protocol.

In this project, our mindset of maximal transparency always allowed us to
openly discuss all aspects of our work with many different people, including
students of ours who developed various prototypes [13,14]. This created a per-
manent challenge for the cryptographic protocol, which forced us to constantly
question our design decisions and improve our technical solutions. We conclude
that releasing all cryptographically relevant documents as a matter of principle
was fundamental for the success of the project. More generally, we see it as an
important trust-establishing measure.

Item 16: Verifier

The last point we want to mention in this paper is an important aspect for a
verifiable e-voting system. Unfortunately, we were not yet able to cover it in
this project. It’s about specifying the verification software—sometimes called the
verifier—for the proposed protocol. In the original project setting of the State of
Geneva, it was planned to outsource the specification and development of the
verifier to a third-party institution. To establish a certain degree of independence
between the protocol and the verifier, this decision of the project owners was
perfectly understandable. We never questioned this decision, but it prevented
us from paying enough attention to this important topic. When the project was
dropped in fall 2018, the outsourced verifier project had started, but it was not
yet very advanced. This finally led to the current situation, where the specification
and the implementation of the e-voting protocol are both very advanced, but
almost nothing is available for the verifier. Even though, the e-voting protocol
describes how to verify certain cryptographic aspects, but that is not to be
confused with the complete verification of the whole voting process.

We believe that in projects like this, it’s best to let the specification of
the protocol and the verifier go hand in hand, and to apply the same level
of preciseness and completeness to both of them. We see the verifier as the
ultimate way of challenging the protocol run, both in the abstract setting of the
specification document and in the concrete setting of executing the code on real
machines. So far, this challenge is missing in our project.

5 Conclusion

In software development, best practices are available in many areas. They are
very useful for developers to avoid bad design decisions and typical programming

mistakes. This certainly also holds for developing an e-voting system, but the
delicacy of implementing a cryptographic protocol makes the situation a bit more
complicated. We therefore believe that the e-voting community should come up
with its own set of best practices and define respective minimal standards. This
paper makes a first step into this directions based on our experience from the
CHVote project. Among the discussed sixteen topics, we believe that the advice
of providing all algorithmic details in pseudo-code is the most important one,
together with structuring the source code into a cryptographically relevant and a
cryptographically irrelevant part.

References

1. Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS) vom 13.
Dezember 2013 (Stand 1. Juli 2018). Die Schweizerische Bundeskanzlei (BK), 2018.

2. E. Barker. Recommendation for key management. NIST Special Publication 800-57,
Part 1, Rev. 5, NIST, 2020.

3. D. Bernhard, V. Cortier, P. Gaudry, M. Turuani, B. Warinschi. Verifiability analysis
of CHVote. IACR Cryptology ePrint Archive, 2018/1052, 2018.

4. D. Bernhard, O. Pereira, B. Warinschi. How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to Helios. ASIACRYPT’12, 18th International
Conference on the Theory and Application of Cryptology and Information Security,
LNCS 7658, pages 626–643, Beijing, China, 2012.

5. J. Bloch. Effective Java. Addison-Wesley, 3rd edition, 2018.
6. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. CRYPTO’86, 6th International Cryptology Conference on
Advances in Cryptology, LNCS 263, pages 186–194, Santa Barbara, USA, 1986.

7. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

8. R. Haenni, R. E. Koenig, E. Dubuis. Cast-as-intended verification in electronic elec-
tions based on oblivious transfer. E-Vote-ID’16, 1st International Joint Conference
on Electronic Voting, LNCS 10141, pages 277–296, Bregenz, Austria, 2016.

9. R. Haenni, R. E. Koenig, P. Locher, E. Dubuis. CHVote system specification –
version 3.0. IACR Cryptology ePrint Archive, 2017/325, 2020.

10. R. Haenni and P. Locher. Performance of shuffling: Taking it to the limits. Voting’20,
FC 2020 International Workshops, Kota Kinabalu, Malaysia, 2020.

11. R. Haenni, P. Locher, N. Gailly. Improving the performance of cryptographic
voting protocols. Voting’19, FC 2019 International Workshops, LNCS 11599, pages
272–288, Frigate Bay, St. Kitts and Nevis, 2019.

12. R. Haenni, P. Locher, R. E. Koenig, E. Dubuis. Pseudo-code algorithms for verifiable
re-encryption mix-nets. Voting’17, FC 2017 International Workshops,, LNCS 10323,
pages 370–384, Silema, Malta, 2017.

13. K. Häni and Y. Denzer. CHVote prototype in Python. Project report, Bern
University of Applied Sciences, Biel, Switzerland, 2017.

14. K. Häni and Y. Denzer. Visualizing Geneva’s next generation e-voting system.
Bachelor thesis, Bern University of Applied Sciences, Biel, Switzerland, 2018.

15. S. J. Lewis, O. Pereira, V. Teague. How not to prove your election outcome.
Technical report, 2019.

16. U. Maurer and C. Casanova. Bericht des Bundesrates zu Vote électronique. 3.
Bericht, Schweizerischer Bundesrat, 2013.

	CHVote: Sixteen Best Practices and Lessons Learned

