

One Person, One Computer, One Vote Theoretical and Practical Challenges of Designing Online Voting Systems

Rolf Haenni April 19th, 2018

Outline

- Introduction
- Swiss Context
- Verifiable Elections
- Cryptographic Voting Protocols
- CHVote Voting Protocol
- 🕨 Demo

Conclusion

Introduction

Neue Zürcher Zeitung

Gegner wollen E-Voting mit einer Volksinitiative verbieten

Politiker, Juristen, IT-Experten und Hacker sehen die Demokratie in Gefahr, wenn die Schweiz elektronische Abstimmungen zulässt. Solche E-Wahlsysteme seien einfach zu manipulieren und die Gefahr von Wahlfälschungen gross.

netzwocne

NEWS STORYS MEINUNGEN STUDIEN DOS

NEWS

Zertifizierung erweitert

Post kann E-Voting für 50 Prozent der Stimmbürger anbieten

Mo 21.08.2017 - 10:23 Uhr | Aktualisiert 21.08.2017 - 10:23 von Christoph Grau

Bisher durften mit der E-Voting-Lösung der Post nur 30 Prozent der Stimmbürger elektronisch abstimmen. Die Bundeskanzlei hob die Grenze nun auf 50 Prozent an. In einem Jahr sollen es 100 Prozent werden.

Wie sicher sind die Schweizer E-Voting-Systeme? Diese Frage beschäftigt nicht nur die Politik, sondern auch die IT-Security-Szene. So widmete sich auch ein Themenblock am diesjährigen SwissCyberStorm in Luzern der elektronischen Stimmabgabe.

Tages Anzeiger

Front Zürich Schweiz International Wirtschaft Börse Sport Kultur Reisen Wissen Auto Blogs Panorama Mehr •

SonntagsZeitung // ePaper Leserangebote Leserreisen Leserbriefe Monatsquiz Abonnieren

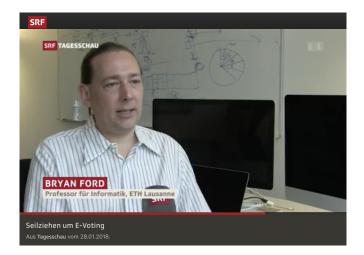
E-Voting: Unsicheres System und Maulkorb für Kritiker

Befürworter elektronischer Abstimmungen wie FDP-Nationalrat Marcel Dobler wollen die Technologie auf Teufel komm raus durchboxen.

Bundesrat schiebt E-Voting auf die lange Bank

Bis 2019 sollen alle Auslandschweizer elektronisch wählen können, fordert der CVP-Ständerat Filippo Lombardi. Der Bundesrat hält dieses Ziel jedoch für «unrealistisch».

Datenschützer kritisiert Digital-Wahl


Gefährdet E-Voting das Stimmgeheimnis?

Bereits 2019 sollen zwei Drittel der Kantone digital abstimmen können. Aber wie soll das funktionieren und gefährdet E-Voting möglicherweise das Stimmgeheimnis?

Tages Anzeiger

Was, wenn der Tresorraum der Schweizer Demokratie geknackt wird?

Hernani Marques fasst es nicht: Im Cyber-Krieg setzt die Schweiz auf E-Voting? Jetzt will er demonstrativ hacken.

It is enough that the people know there was an election. The people who cast the votes decide nothing. The people who count the votes decide everything.

Josef Stalin

If we are to bring computerization into our electoral processes, then we must do it in such a way as to preserve the integrity of the process and to prevent the concentration of power into the hands of the few who control the process.

> Josh Benaloh, Verifiable Secret-Ballot Elections PhD Thesis, Yale University, 1987

Swiss Context

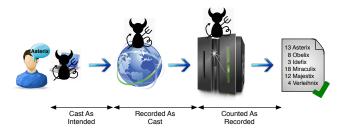
Direct Democracy in Switzerland

Up to four election days per year

- Elections
- Mandatory referendums
- Optional referendums (>50k signatures)
- Popular initiatives (>100k signatures)
- Four different political levels
 - ▶ Federal
 - Cantonal
 - Municipal
 - 🕨 Pastoral

(voters are not necessarily eligible on all four levels)

Up to 10 different election topics per election day


E-Voting Tradition in Switzerland

Classical voting channels

- Polling station
- Landsgemeinde
- Postal voting (since 1994, approx. 90%)
- Non-verifiable "blackbox" e-voting systems (1st generation)
 - Canton of Geneva (since 2003)
 - Canton of Zürich (Unisys, 2004–2015)
 - Canton of Neuchâtel (Scytl, 2005–2015)
- Collaborations with 10 other cantons (since 2009)
- Target audience: Swiss citizens living abroad

Legal Ordinance on Electronic Voting

- Effective since December 2013
- Enhanced security requirements
 - End-to-end encryption
 - End-to-end verifiability (cast-as-intended, recorded-as-cast, counted-as-recorded)
 - Distribution of trust (shared decryption key, mix-net)

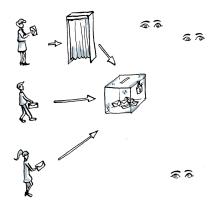
Stepwise Introduction

Current systems: max. 10/30% of federal/cantonal electorate

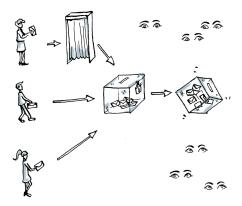
- Two-step expansion
 - Step 1: max. 30/50% of federal/cantonal electorate
 - Step 2: 100% electorate
- Two competing 2nd generation projects
 - Swiss Post (Scytl):
 - Has reached Step 1 in 2017
 - Plans to reach Step 2 in 2019
 - Canton of Geneva (CHVote)
 - Plans to reach Step 2 in 2019

Verifiable Elections

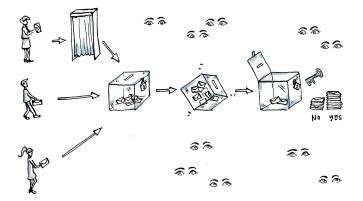
The introduction of verifiability is central to the new security requirements.

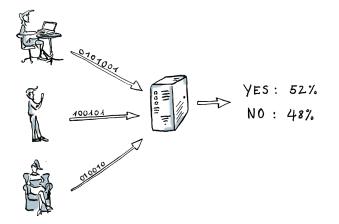

3rd Vote Electronique Report Swiss Federal Council, 2013 Voters must be able to ascertain whether their vote has been manipulated or intercepted on the user platform or during transmission. [...] Voters must receive proof that the server system has registered the vote as it was entered by the voter on the user platform.

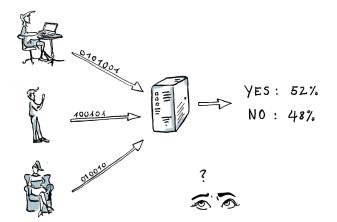
> Federal Chancellery Ordinance on Electronic Voting VEleS, Art.4, 2013

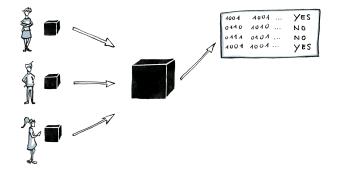

Auditors receive proof that the result has been ascertained correctly. They must evaluate the proof in a observable procedure. To do this, they must use technical aids that are independent of and isolated from the rest of the system.

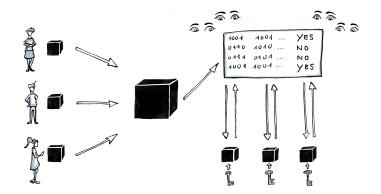
> Federal Chancellery Ordinance on Electronic Voting VEleS, Art.5, 2013


Traditional Paper-Based Voting


Traditional Paper-Based Voting


Traditional Paper-Based Voting


Remote Electronic Voting (Blackbox)


Remote Electronic Voting (Blackbox)

Verifiable Remote Electronic Voting

Verifiable Remote Electronic Voting

Вов		
ALICE		
EVE		
DAVE		

Вов	1001	
ALICE	0010	
Eve	1110	
DAVE	6011	
•••	•••	
_		I

VOTER

BOB ALICE EVE	0010	0010010 00010101 11001101	
DAVE		1100 ··· 0010	

VOTER

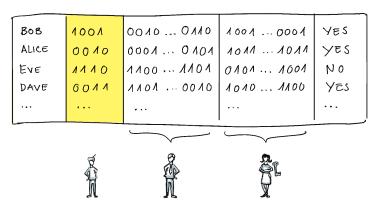
MIXER

BOB Alice Eve	1110	00100110 00010101 11001101	ЛОЛЛ ЛОЛЛ 0Л0Л ЛООЛ	
DAVE	6011	1101 0010	1010 NNOU	
••••	•••	•		

DECRYPTER

VOTER

BOB ALICE EVE DAVE	0010 1110	00100110 00010101 11001101	ЛОЛЛ ЛОЛЛ 0Л0Л ЛООЛ	YES
	6011 	1101 ··· 0010 		ус <u>э</u>



DECRYPTER

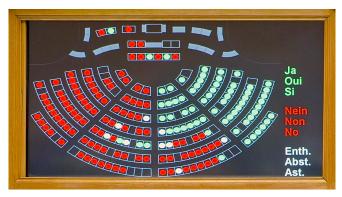
VOTER

VOTER

MIXER

DECRYPTER

BOB ALICE EVE	0010 1110	00100110 00010101 11001101	лолл Лолл 0Лол Лбол	YES No
DAVE	- -	1101 0010		YES
	•••	•••		•••



DECRYPTER

VOTER

Bulletin Board

Voting panel, Swiss National Council, Bern, Switzerland (srf.ch)

Bulletin Board

List of eligible voters, Erbil, Iraq (nzz.ch)

Bulletin Board

Landsgemeinde, Glarus, Switzerland (blick.ch)

Verification Software

\varTheta 🔿 Vote Verifier	
e View Language	Н
Verifier VERIFIER for UNI	vot
Welcome Ind: vsbfh-2013 x vsuzh-2013 x	
Specification Entity Type Election Results 17%	
Errors and Exceptions:	
SYSTEM_SETUP	
Schnorr's p is prime	🗸 🔢
Schnorr's q is prime	
Schnorr's g is a generator	
Schnorr's p is a safe prime	
Schnorr's parameters length	
CA certificate	🗸 📗
EM certificate	🗸 📗
ELECTION_SETUP	
EA certificate	····· 🗸 📲
Signature of EA certificate	?
Signature of election's basic parameters	····· 🗙 📗
Tallier certificate for tallierBaldr	

Verification Software

View Language	
ote independent erifier VERIFIER	INT VO
Welcome Ind: vsbfh-2013 x vsuzh-2013 x	vsuzh-2013-1 x
O Specification O Entity O Type Election Results	40%
Errors and Exceptions:	
FVV	13
1.1 Cornelia Vontobel	132
1.2 Saskia Keller	108
IG Oerlikon	382
2.1 Ivan Marijanovic	852
2.2 Roberto Ramphos	739
2.3 Muriel Ehrbar	775
2.4 Nadja Busch	756
2.5 Nina Egger	776
2.6 Tristan Jennings	727
2.7 Louis Binswanger	710

Cryptographic Voting Protocols

The Secure MPC Perspective

In secure multi-party computation (MPC), the voting problem can be formulated as follows:

- ▶ Parties P_1, \ldots, P_n with private inputs $v_i \in \{0, 1\}$
- Common output $s = f(v_1, \ldots, v_n) = \sum_i v_i$
- > Design a secure protocol to be executed among P_1, \ldots, P_n
 - ▶ Privacy: No party should learn anything more than $s = \sum_i v_i$
 - Correctness: Each party receives the correct output
 - Independent inputs: Parties choose their inputs independently
 - Output delivery
 - Fairness

Formal security definition based on ideal/real-model paradigm

Cryptographic Voting Protocol

 General MPC protocols are not applicable to real-world elections

- Protocols are not efficient enough for large n
- Several preconditions are not met
- Therefore, e-voting research focuses on designing specialized cryptographic voting protocols
 - Election administration
 - Independent authorities (of which a majority is honest)
 - Append-only bulletin board
 - Voters
 - Verifiers (auditors)

Desirable Security Properties

Privacy

- Vote secrecy (everlasting?)
- Participation secrecy
- Receipt-freeness

Correctness

- Votes from ineligible voters are not counted
- Eligible voters can vote at most once
- > All valid from eligible voters votes are counted
- E2E Verifibility
 - Individual (cast-as-intended, recorded-as-cast)
 - Universal (counted-as-recorded)
- > Fairness: nobody learns partial election results during election

Coercion-Resistance

Approach 1: Homomorphic Tallying

Public-key encryption scheme

- $\blacktriangleright (pk, sk) \leftarrow KeyGen()$
- \blacktriangleright $e \leftarrow Enc_{pk}(m, r)$
- ▶ $m \leftarrow Dec_{sk}(e)$

Additively homomorphic encryption schemes

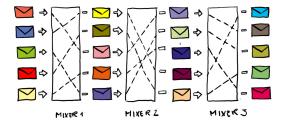
 $Enc_{pk}(m_1, r_1) * Enc_{pk}(m_2, r_2) = Enc_{pk}(m_1 + m_2, r_1 + r_2)$

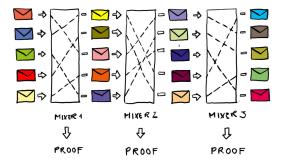
Examples: Exponential ElGamal, Paillier

Approach 1: Homomorphic Tallying

- Step 1: Multiple authorities generate a common public key pk
- > Step 2: Voters submit $e_i = Enc_{pk}(v_i, r_i)$ to bulletin board
- Step 3: The authorities jointly...
 - Retrieve $E = (e_1, \ldots, e_n)$ from bulletin board
 - Compute $e = \prod_i e_i$
 - ▶ Decrypt *e* into $s \leftarrow Dec_{sk}(e)$ using their shares of *sk*
 - Publish s on the bulletin board
- Non-interactive zero-knowledge proofs are added to prevent cheating voters and authorities

• Re-encryption of $e = Enc_{pk}(m, r)$


$$ReEnc_{pk}(e, r') = e * Enc_{pk}(0, r') = Enc_{pk}(m, r + r')$$


► A cryptographic shuffle transforms an list E = (e₁,..., e_n) of encryptions into E' = (e'₁,..., e'_n) such that

$$e'_j = ReEnc_{pk}(e_i, r'_j)$$

holds for every i and j

A series of cryptographic shuffles forms a re-encryption mixnet

- Step 1: Multiple authorities generate a common public key pk
- > Step 2: Voters submit $e_i = Enc_{pk}(v_i, r_i)$ to bulletin board
- Step 3: The authorities perform a mixnet on $E = (e_1, \ldots, e_n)$
- Step 4: The authorities jointly...
 - ▶ Retrieve $E' = \{e'_1, ..., e'_n\}$ from bulletin board
 - ▶ Decrypt each e'_i into $v_i \leftarrow Dec_{sk}(e'_i)$ using their shares of sk
 - Publish (v_1, \ldots, v_n) and $s = \sum_i v_i$ on bulletin board
- Non-interactive zero-knowledge proofs are added to prevent cheating authorities

CHVote Voting Protocol

CHVote Project

Project goals

- New implementation from scratch
- Reach second expansion stage in one step (100% electorate)
- > Developed, hosted, operated entirely by the State of Geneva

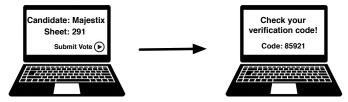
Strategy

- Collaboration with academia
- State-of-the-art technologies
- Maximal transparency
- High-quality open documentation
- Open-source license (Affero GPL)
- Invitation to public code reviewing

CHVote Voting Protocol

- Collaboration with Bern University of Applied Sciences
- Cast-as-intended verifiability à la Norway (see next slide)
- Key cryptographic ingredients
 - Distributed generation of codes
 - Oblivious transfer of selected codes
 - Verifiable re-encryption mix-net
 - Schnorr identification
 - Distributed decryption with shared ElGamal private key
- Scientific papers presented at E-Vote-ID'16, FC'17, FC'18

Cast-as-Intended Verification


Prior to an election, a code sheet with different verification codes for each voting option is generated for every voter

- Verification codes are different on every code sheet
- Code sheets are sent to voters by postal mail

Code Sheet Nr.291		Code Sheet	Nr.321
Candidates	Codes	Candidates	Codes
Asterix	74494	Asterix	21344
Obelix	84443	Obelix	29173
Idefix	91123	Idefix	91123
Miraculix	63382	Miraculix	72282
Majestix	85921	Majestix	18194
Verleihnix	79174	Verleihnix	53382

Cast-as-Intended Verification

 After submitting a vote, corresponding verification codes are displayed

- Matching codes imply that the vote has been cast as intended
- Otherwise, voters are instructed to vote by postal mail

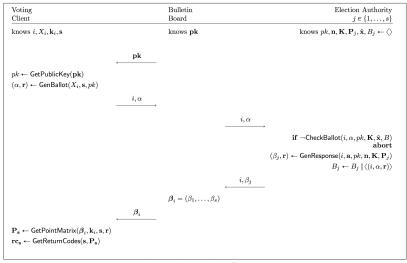
Cast-as-Intended Verification

Detectable malware attacks

- Manipulated votes
- Suppressed votes
- Manipulated verification codes
- Suppressed verification codes
- Unsolved malware attacks
 - Secrecy of vote
 - Social engineering attack: "Please enter verification code"
- Critical processes
 - Generation and printing of code sheets
 - Sending code sheet by postal mail

 \boxtimes

 \square


Liste de codes pour la carte n° 5874-8863-1400-8743			
Votation fédérale			
Question 1 Acceptez-vous l'arrêté fédéral du 20 juin 2013 portant règlement du financement et de l'aménagement de l'infrastructure ferroviaire (Contre- projet direct à l'initiative populaire "Pour les transports publics", qui a été retirée) ?	Oui A2B4	Non J5B9	Blanc Z8H5
Question 2 Acceptez-vous l'initiative populaire "Financer l'avortement est une affaire privée - Alléger l'assurance-maladie en radiant les coûts de l'interruption de grossesse de l'assurance de base" ?	Oui P8H3	Non X2A7	Blanc Q3L7
Votation cantonale			
Question 1 Acceptez-vous l'initiative 143 «Pour une véritable politique d'accueil de la Petite enfance» ?	Oui U6T4	Non P3D6	Blanc S6C2
Question 2 Acceptez-vous la loi constitutionnelle modifiant la constitution de la République et canton de Genève (Contreprojet à l'IN 143) (A 2 00 – 10895), du 15 décembre 2011 ?	Oui N4F2	Non M2A3	Blanc Q9L5
Question 3 Question subsidiaire: Si l'initiative (IN 143 «Pour une véritable politique d'accueil de la Petite enfance») et le contreprojet sont acceptés, lequel des deux a-t-il votre préférence ? Initiative 143 ? Contreprojet ?	IN K9W9	CP T3S6	Blanc Y2V4

Identification	Rappel légal	Bulletin de vote	Récapitulatif	Vérification	Finalisation du vo
		- II	vous reste 29 minute(s)	18 seconde(s) pour cor	tfirmer votre vote
Codes de vérific	ation				-
	les codes pour chaque (oumis dans votre matèrie question solent les même	i de vole Is entre cello page web él	ceux de votre Ot	trouver les codes ?
	TION FÉDÉRALE			VOS CHOR	VOS CODES
fondée s		daire «Pour une éco ciente des ressourc		NON	M9F2
verte}»?					
101004.00	-vous l'initiative popu	ilaire «AVSplus: pou	r une AVS forte»?	NON	L3M8
2 Acceptez 3 Acceptez		ilaire « AV Splus: pou du 25 septembre 201		NON	L3M8 X3T6
2 Acceptez 3 Acceptez renseign	-vous la loi fédérale				

CHVote Protocol Specification

- Published on April 20, 2017 (with prototype source code)
- Self-contained and comprehensive document (~120 pages)
 - Description of election use cases
 - Mathematical and cryptographic background
 - Details of encoding and hashing algorithms
 - Adversary and trust assumptions
 - Cryptographic and election parameters
 - Recommendations for group sizes, key lengths, code lengths
- Three main protocols (three sub-protocols each)
 - Pre-election
 - Election
 - Post-election
- About 60 pseudo-code algorithms

Phase	Election Admin.	Election Authority	Printing Authority	Voter	Voting Client	Bulletin Board	Protocol Nr.
1. Pre-Election	•	•	•	•		•	
1.1 Election Preparation	•	•				•	6.1
1.2 Printing of Code Sheets		•	•	•		•	6.2
1.3 Key Generation		•				•	6.3
2. Election		•		•	•	•	
2.1 Candidate Selection				•	•	•	6.4
2.2 Vote Casting		•			•	•	6.5
2.3 Vote Confirmation		•		•	•	•	6.6
3. Post-Election	•	•				•	
3.1 Mixing		•				•	6.7
3.2 Decryption		•				•	6.8
3.3 Tallying	•					•	6.9

Protocol 6.5: Vote Casting

Algorithm: GenBallot (X, \mathbf{s}, pk) **Input:** Voting code $X \in A_{\mathbf{Y}}^{\ell_X}$ Selection $\mathbf{s} = (s_1, \ldots, s_k), \ 1 \leq s_1 < \cdots < s_k$ Encryption key $pk \in \mathbb{G}_q \setminus \{1\}$ $x \leftarrow \mathsf{ToInteger}(X)$ // see Alg. 4.7 $\hat{x} \leftarrow \hat{a}^x \mod \hat{p}$ $\mathbf{q} \leftarrow \mathsf{GetSelectedPrimes}(\mathbf{s})$ $//\mathbf{q} = (q_1, \ldots, q_k)$, see Alg. 7.19 $m \leftarrow \prod_{i=1}^{k} q_i$ if $m \ge p$ then $return \perp$ //(k,n) is incompatible with p $// \mathbf{a} = (a_1, \ldots, a_k), \mathbf{r} = (r_1, \ldots, r_k), \text{ see Alg. 7.20}$ $(\mathbf{a}, \mathbf{r}) \leftarrow \text{GenQuery}(\mathbf{q}, pk)$ $a \leftarrow \prod_{i=1}^{k} a_i \mod p$ $r \leftarrow \sum_{i=1}^{k} r_i \mod q$ $b \leftarrow a^r \mod p$ $\pi \leftarrow \mathsf{GenBallotProof}(x, m, r, \hat{x}, a, b, pk)$ $//\pi = (t, s)$, see Alg. 7.21 $\alpha \leftarrow (\hat{x}, \mathbf{a}, b, \pi)$ $// \alpha \in \mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q}^{k} \times \mathbb{G}_{q} \times ((\mathbb{G}_{\hat{q}} \times \mathbb{G}_{q}^{2}) \times (\mathbb{Z}_{\hat{q}} \times \mathbb{G}_{q} \times \mathbb{Z}_{q})), \mathbf{r} \in \mathbb{Z}_{q}^{k}$ return (α, \mathbf{r})

Algorithm 7.18: Generates a ballot based on the selection s and the voting code X. The ballot includes an OT query **a** and a NIZKP π . The algorithm also returns the randomizations **r** of the OT query, which are required in Alg.7.27 to derive the transferred messages from the OT response.

1	/**
2	* Algorithm 7.18: GenBallot
3	*
4	* @param upper_x the voting code
5	* @param bold_s voters selection (indices)
6	* @param pk the public encryption key
7	* @return the combined ballot, OT query and random elements used
8	*/
9	<pre>public BallotQueryAndRand genBallot(String upper_x, List<integer> bold_s, EncryptionPublicKey pk) {</integer></pre>
10	<pre>BigInteger x = conversion.toInteger(upper_x, publicParameters.getUpper_a_x());</pre>
11	BigInteger x_circ = modExp(g_circ, x, p_circ);
12	List <biginteger> bold_q = computeBoldQ(bold_s);</biginteger>
13	BigInteger m = computeM(bold_q, p);
14	ObliviousTransferQuery query = genQuery(bold_q, pk);
15	BigInteger a = computeA(query, p);
16	BigInteger r = computeR(query, q);
17	BigInteger b = modExp(g, r, p);
18	NonInteractiveZKP pi = genBallotProof(x, m, r, x_circ, a, b, pk);
19	BallotAndQuery alpha = new BallotAndQuery(x_circ, query.getBold_a(), b, pi);
20	
21	return new BallotQueryAndRand(alpha, query.getBold_r());
22	

Crypto-Algorithms in Pseudo-Code

Ideal interface between cryptographers, developers, auditors

- > Cryptographers can write, read, and check pseudo-code
- Developers can derive real code from pseudo-code
- Auditors can check if pseudo-code and real code match
- Useful for security proofs
- Rarely used in . . .
 - cryptographic literature
 - electronic voting protocols
- Often used in standards (FIPS, RFC, PKCS, ...)

FIPS PUB 186-4: Digital Signature Standard (DSS)

A.2.3 Verifiable Canonical Generation of the Generator *g* Input:

1. <i>p</i> , <i>q</i>	The primes.
2. domain_parameter_seed	The seed used during the generation of p and q .
3. index	The index to be used for generating <i>g. index</i> is a bit string of length 8 that represents an unsigned integer.

Process:

- 1. If (index is incorrect), then return INVALID.
- 2. N = len(q).
- 3. e = (p-1)/q.
- 4. count = 0.
- 5. count = count + 1.
- 6. If (count = 0), then return **INVALID**.
- 7. $U = domain_parameter_seed ||$ "ggen" || index || count.
- 8. $W = \operatorname{Hash}(U)$.
- 9. $g = W^e \mod p$.
- 10. If (g < 2), then go to step 5. Comment: If a generator has not been found.
- 11. Return VALID and the value of g.

Demo

NextGen Vote Visualization

- Bachelor thesis by Y. Denzer and K. Häni (January 2018)
- One-to-one implementation of CHVote specification
- Made for educational purpose only

https://chvote.ti.bfh.ch

Conclusion

Conclusion

- Verifiability is central to making e-voting secure
- Various cryptographic protocols exist in scientific literature, e.g. based on homomorphic tallying or re-encryption mixnets
- The process of introducing e-voting in Switzerland is slow, but on the right track (legal ordinance VEleS)
- Challenges and open problems
 - Complexity of cryptographic protocols
 - Cryptography in web browser (JavaScript)
 - Vote secrecy on insecure platform
 - Vote buying and coercion
 - Everlasting privacy
 - Usability and "voter education"