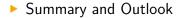


Append-only Bulletin Board


Severin Hauser PhD Workshop, Tarragona, April 25th, 2016

Current Work

Introduction

Work Overview

- Defining operations and wording
- Implementation
- UniVote2
- Understanding the problems behind append-only
- What are the trust assumptions
- Who to improve these assumptions

Vocabulary

- Properties A Board can have some properties e.g. interlinked
- Message Is posted to the bulletin board
- Attribute Is added to a posted message to ensure a board property
- Post A post represents the message and all it's attributes

Append-only

- ▶ No posted message *m* can be deleted
- ▶ No posted message *m* can be altered

$$\blacktriangleright \ \mathcal{P}_{\langle t \rangle} \subseteq \mathcal{P}_{\langle t+1 \rangle}$$

Properties

- Prevent board flooding
- Give the user a receipt
- Create a hash chain over all messages.
- etc.

Past Work

Post

- Either the author or the board can add an attribute to m
 - \blacktriangleright list of author attributes α
 - \blacktriangleright list of board attributes β
- The post $p = (m, \alpha, \beta)$ is stored in \mathcal{P}
- \blacktriangleright For the author to gain full knowledge of the post, β must be returned.

 $Post(m, \alpha) : \beta$

- Limit the result *R* by introducing query *Q* ⊆ *M* × *A* × *B R* = {(*m*, α, β) ∈ *P* : (*m*, α, β) ∈ *Q*} ⊆ *P*
- > The board can add result attributes γ to R

 $\operatorname{Get}(Q):R,\gamma$

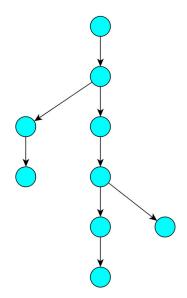
Properties

Post properties

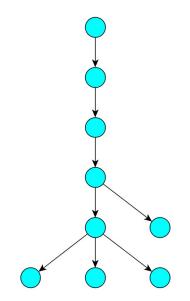
- \blacktriangleright Adds an attribute to either α or β
- Get properties
 - \blacktriangleright Adds an attribute to γ
 - is added by the bulletin board
- Further properties
 - Adds additional operations to the board. Does not require attributes

Current Work

Trust assumptions


- ▶ The board does not delete published messages $\mathcal{P}_{\langle t \rangle} \subseteq \mathcal{P}_{\langle t+1 \rangle}$
- > The board delivers always the complete set \mathcal{P} on request.
- The board adds every valid message m to P. valid(m, α) = true → p ∈ P

Robust PBB


- > Assumption: At least *t* out of *n* are honest.
- If the post and get operations involve all n all other assumptions are true
- Has performance limits with some properties

Interlinked(hash-chain)

- Does not replace the assumptions but provides a degree of detection for misbehaviour
- This is true for the single and robust variant
- Its enough to detect a conflict

- ▶ Probability of conflicting hash values $1 (2 * \sum_{x} depth(x)/n * (n 1))$
- Branches with size 1
- As late as possible

- Works best if views of P don't get shared
- > View can be represented by the hash value of the last node
- Either use broadcast channels (multiple)
- For a single board something like an auditor-network might make sense

Auditor-network

- A network of n auditors with at least t honest
- > The board need to send them every hash entry
- Elevates the assumptions for deletion and full view to t out of n as long as every operation is validated with the auditor-network

Summary and Outlook

Outlook

- Further work on the part around assumptions and interlinked
- Find differences in the broadcast channels(BitCoin, Twitter, GitHub)
- Is there a "robust" way for accepting valid messages without the board being robust?

Questions?

http://e-voting.bfh.ch

severin.hauser@bfh.ch

Sectioned

- Allows to separate unrelated messages into different sections
 e.g. the data of various elections
- ▶ User attribute $s \in S$ must be provided

Grouped

- Messages are organized into groups
- Messages in the same group are usually similar
- \blacktriangleright user attribute $g \in \mathcal{G}$ must be provided
- \triangleright \mathcal{G} is the same for every section s.

- Depends on Grouped
- ▶ Defines for g_i the set of correct messages $\mathcal{M}_i \subseteq \mathcal{M}$
- Does not add an attribute

Certified Posting

- With this property every user receives after a successful post a receipt from the board
- Board attribute S_p = Sign_{sk_{BB}}(m, α, β_I) is added by the bulletin board where
 - sk_{BB} is the secret key of the bulletin board
 - > β_I is the sublist of all board attributes before S_p

Certified Reading

- This is a get property
- With this property the bulletin board commits to every result R
- Result attribute S_Q = Sign_{skBB}(Q, R, γ_I) is added by the bulletin board
 - > γ_I is the sublist of γ added before S_Q

Notifying

- This property belongs to further properties
- It allows an entity e to register for a Query Q on the bulletin board
- ▶ If a post full fills Q, e is notified.
- > This property results in the following two operations:
 - Register(e, Q) : c Where Q represents the query for the messages the entity is interested in and c a return code, which can be used to unregister.
 - Unregister(c) : -By providing his/her return code c, one can unregister and will not receive any further notification.