
Bachelor Thesis

Truly Random

Verifiable Entropy Accumulation Based on a Comprehensible,
Random Phenomena

BSc in Computer Science

University of Applied Sciences,
Bern, Switzerland

June 11, 2015

Authors

Morandi, Matteo
matteoalain.morandi@students.bfh.ch

Rothen, Tobias
tobias.rothen@students.bfh.ch

Tutor

Dr. Koenig, Reto
reto.koenig@bfh.ch

Expert

Dr. Flueckiger, Federico
federico.flueckiger@gs-efd.admin.ch

Abstract

Random numbers are a crucial part of cryptography. If they can be determined by an attacker,
even the best encryption algorithms become vulnerable. Today there are many established
random number generators, but at the real base of it all lies the problem of providing reliable
entropy. Solving this problem by means of a True Random Number Generator (TRNG) is
usually avoided because of costs and complexity of most TRNGs. But since randomness
seems to be all around us, we would like to prove that entropy accumulation must not
always be complicated and expensive. By creating a prototype that is providing entropy in a
easily comprehensible way, we also offer the possibility to verify the whole process of how the
random data is gathered. A property that is missing in nearly every hardware random number
generator so far. The following document describes the conception and implementation of
such a verifiable random number generator in the scope of our bachelor thesis at the Bern
University of Applied Science.

Versions

Version Date Status Remarks

1.0 11.06.2015 Final Final Version

Truly Random, V1.0, 11.06.2015 2

Contents

1. Introduction 7
1.1. Definition of the Project . 8
1.2. Fundamental Concepts of Random Number Generation 8
1.3. The Entropy Source Issue . 9
1.4. Current State of the Art . 10
1.5. Comprehensibility and Verifiability of Random Number Generators 11

2. Conception 13
2.1. Our Approach . 13

2.1.1. Preliminary Work . 14
2.2. Generator Concept . 14

2.2.1. Use Cases . 15
2.3. Server Concept . 15

2.3.1. Use Cases . 15
2.3.2. The Fortuna PRNG . 16

2.4. Transmission Concept . 18
2.4.1. Initialization and Authorization . 18
2.4.2. Transport of Random Data . 19
2.4.3. Timeout and Offline Mode . 21

2.5. Risk Assessment . 21
2.5.1. Generator Security . 21
2.5.2. Transmission Security . 22
2.5.3. Server Security . 23
2.5.4. Trust Assumptions . 24

2.6. Testing randomness . 25
2.6.1. Statistical randomness tests . 25
2.6.2. Human perception . 26

2.7. Requirements . 29
2.8. Goals . 29
2.9. Project Schedule . 33
2.10. Milestones . 34

2.10.1. Phase Planning . 34
2.10.2. Phase Implementation . 35
2.10.3. Phase Testing . 36
2.10.4. Phase Conclusion . 37

3. Implementation 38
3.1. Main Concept . 38
3.2. Development Environment . 39
3.3. Prototype structure . 39
3.4. Electronics . 45

Truly Random, V1.0, 11.06.2015 3

3.5. Software overview . 49
3.6. Prototype Application . 51

3.6.1. Main . 51
3.6.2. Graphical User Interface . 52
3.6.3. Logging . 53
3.6.4. Configuration . 53
3.6.5. System / Hardware Access . 54
3.6.6. Sound output and alarming . 55
3.6.7. Camera . 55
3.6.8. Random Data Control . 57
3.6.9. Testing tools . 58
3.6.10. Image Processing . 64

3.7. Server Application . 67
3.7.1. User interface . 67
3.7.2. Seeding Strategies . 67

3.8. Data Transmission . 69
3.8.1. Hardware Implementation . 70
3.8.2. Software Implementation . 70

3.9. Test Procedure (Challenge Response) . 72

4. Conclusion 74
4.1. Progress and Time Management . 74
4.2. Open Issues . 75
4.3. Prospect . 76

A. Transmission Flow 80
A.1. Server Startup . 80
A.2. Server Data Transport . 81
A.3. Generator Startup . 82
A.4. Generator Data Transport . 83

B. Installation Manuals 84
B.1. (Installation Generator(Raspberry Pi) . 84

B.1.1. Setup . 84
B.1.2. Prerequisites . 84
B.1.3. Starting the Application . 86

B.2. Installation (Server) . 87
B.2.1. Setup . 87
B.2.2. Prerequisites . 87
B.2.3. Starting the Application . 88
B.2.4. Application Recovery . 88

Truly Random, V1.0, 11.06.2015 4

List of Figures

1. Basic setup of a camera based generator . 13
2. Verifiability of a camera based generator . 13
3. Intrusion detection due to verifiability . 14
4. Generator of Fortuna . 16
5. Fortuna overall structure . 17
6. Authentication setup . 19
7. Data transmission . 20
8. Corrupt data handling . 20
9. Comparison of two two-dimensional random walks 27
10. Comparison of bitmaps between random.org and PHP rand() [17] 28
11. Project schedule . 33
12. Main Structure . 38
13. Airbox . 41
14. Tube . 41
15. Tube connector . 42
16. Tube hat . 43
17. Resulting air box split in two parts . 44
18. Schematic diagramm of LEDs . 48
19. Interaction between applications . 50
20. Main class . 51
21. MVC UML . 52
22. Hardware control UML . 54
23. System settings view . 55
24. Camera UML . 56
25. Camera settings view . 57
26. DataControl UML . 57
27. Random walk UML . 58
28. Random walk view . 59
29. Sound analysis UML . 60
30. Sound analyze view . 61
31. QR code UML . 62
32. Random QR view . 63
33. QR code in transmission settings view . 63
34. Image processing strategy setup . 64
35. Average grey-scale grid strategy . 65
36. Image processing strategy setup . 65
37. Verbose visualization on the user interface 66
38. Setup Strategy Pattern for Seeding . 68
39. Transmission states . 69
40. Setup of the USB cable . 70
41. Setup Transmission . 71

Truly Random, V1.0, 11.06.2015 5

42. Insertion of a test module . 72
43. Using the Verbose view for the testing procedure 73
44. Actual project schedule . 74
45. Network Flow Server Startup . 80
46. Network Flow Server Data Transport . 81
47. Network Flow Generator Startup . 82
48. Network Flow Generator Data Transport . 83

List of Tables

1. Prototype Hardware Goals . 30
2. Prototype Software Goals . 31
3. Server Related Goals . 31
4. Data Transmission Goals . 32
5. Conceptional Goals . 32

Truly Random, V1.0, 11.06.2015 6

1. Introduction

Random numbers are essential for various purposes. They are used for simulations, games
and most important of all, for the very basics of cryptography. As the fields of use vary, so
do the requirements of the random numbers whereas the use in cryptography presents the
biggest challenge. These high demands are not unfounded, considering how crucial random
numbers are for the security of almost any system. Furthermore recent revelations (e.g. the
NSA backdoor in the NIST standard [1]) have shown again that attacks on random number
generators are not merely theoretical threats.

Although random number generators have improved in performance and reliability, at the
very bottom of every system we are constrained by the provision of true random bits. Even
the best pseudo random number generator (PRNG) is useless, if initialized with a weak
seed. Providing true randomness however, has proven to be difficult and very expensive. In
addition, well-established true random number generators (TRNGs) are usually a black box
to the customer. He is promised true randomness, but can not reconstruct the generation of
the random numbers and therefore his security is based on trust in the manufacturer rather
than trust in the system.

But since randomness can be found almost everywhere, why do we have to rely on expensive
TRNGs? With our project we intend to produce homemade, feasible randomness. Our
motivation is to find a way to provide true randomness, based on a physical event which
should be both affordable and easy to understand, even for a customer. To achieve this, we
assume that a simple physical event such as swirling objects in a ventilated container could
provide enough entropy to generate true random bits.

The comprehensibility is a key point of our project, since we want to enable any end user to
verify the generation of the random numbers single-handed. Which enables the user to detect
whether a component of the generator has been tampering the random data. A property
that is completely missing in current TRNGs. There already have been similar projects (e.g
lavarand [2]), yet they did not manage to establish and faded. With our prototype, we want
to offer a way to produce true randomness and therefore high security with relatively low
effort. Especially when considering that an intrusion in such a random number generator
would require physical access and immense funds. In our time of omnipotent attackers, we
consider this to be worth a try.

Truly Random, V1.0, 11.06.2015 7

1.1. Definition of the Project

Before going into detail about technical or conceptional issues, we are going to provide an
overview of the initial situation of our bachelor thesis. Submitted by our tutor Reto Koenig
on March 16 2015, our bachelor thesis is defined as followed:

True random generators which are in use today, are not verifiable by nature, as
they claim to gather entropy from uncontrollable context (on quantum level).
Hence they present us with data which results from a black box process. For
cryptographic tasks such as randomized encryption, it is important for the sender
to know that the randomization used during encryption is truly high entropy for
any other party. This way it is important be able to trust the randomization
gathering machinery. This is only possible if this machine can be challenged
—verified. The goal of this bachelor thesis is to create such a verifiable ran-
domization gathering machine and to prove its maximum entropy. A special
challenge is the question on how to provide such a random stream to a com-
puter in a possibly infected computer environment, without cheaply losing too
much entropy.

To solve the problem given in the definition, we are going to create a concept on how
to produce entropy in a way that is both understandable and verifiable for an end user.
To address the advanced requirement of transmission of the random stream, we are going
to provide a stable and safe solution for data transmission between the generator and a
consuming server. To prove that our concept is feasible, we are going to implement a
corresponding prototype.

1.2. Fundamental Concepts of Random Number Generation

In Random Number Generation we differ between two really basic constructs; Pseudo Random
Number Generators (PRNGs) and True Random Number Generators (TRNG).

TRNGs are quite simple to understand, they extract entropy form an apparently random
physical event to provide randomness (e.g. throwing a dice and writing down the resulted
values). As we will see later on, current approaches of TRNGs measure atmospheric noise or
the movement of electrons and are quite difficult to implement and therefore rather expensive.
Yet they provide ”true” randomness and hence high quality entropy, which is nearly impossible
to guess or reproduce. TRNGs are relatively slow and usually fail to provide the amount of
random numbers needed by most computers / servers. This is where PRNGs get useful.

PRNGs are software based random number generators. They basically take an initial value,
the so called seed, and use it with a one-way function (e.g. hash function) that deranges the
input and produces seemingly random outputs. The same process is then repeated with the

Truly Random, V1.0, 11.06.2015 8

resulted output, which produces a big amount of pseudo random data from a small initial
value. This leads to a big advantage in terms of performance, with little entropy a PRNG
is able to provide a massive amount of random data. But there are also some weak points.
For one thing, the output is just seemingly random. Any other computer could reproduce
the full output, given the initial seed it is based on. Therefore it is essential for any PRNG
that attackers are not able to retrieve the seed value. Furthermore, the PRNG will at some
point reproduce its initial seed value and hence the output will start all over again at some
point, which is called the period of a PRNG. This weak spot can be resolved by updating
the seed regularly (reseeding).

1.3. The Entropy Source Issue

Mainly because of the performance and flexibility most systems use PRNG for random number
generation. Yet all PRNG depend on initial seed values and on the fact that those are random.
If they fail to provide a random seed value, an attacker could be able to reproduce it and
hence reproduce the whole output. A quite popular attempt to solve this problem, is to use
a variety of system states to derive a seed value. This could be for example a composition
of usage information about CPU, RAM and other hardware components. However, these
values are usually situated in a well-known range and can be guessed to a certain extent
which means that they are not truly random and do not provide high entropy. Furthermore
most systems usually have a problem providing entropy during start up and an attacker might
even be able to influence those states from outside.

For example if a generator is using the servers incoming or outgoing network traffic as an
input. An attacker could easily guess, maybe measure or even influence network traffic by
manually sending requests to the server. In the past, poorly chosen system state based
entropy sources have already led to serious security breaches (e.g. in Netscape [3]). Now
if we provide entropy in such a manner on a server, there might be just about enough
information to dodge even a well informed attacker. But what if we apply this concept to
smaller systems such as a common router at home or embedded devices? Often these system
have really big difficulties providing enough entropy for strong cryptography.

Although the usage of system states is the current best practice, it is not a really stable
solution. Contemporary PRNGs have started to include this fact in their concept. They try
to decrease the dependency of single entropy sources by splitting up the output of the sources
in so called entropy pools. Those pools are stockpiling the random data and are used to seed
the PRNG in irregular periods. The goal is, that even if one entropy source is influenced by
an attacker, other sources can overcome the temporarily infection of the generator during the
reseed procedure (see section 2.3.2 The Fortuna PRNG). Such approaches might increase
security, but they do not solve the problem of the missing entropy. If a server is using a
lot of cryptography we are going to reach a point where it is simply not possible to provide
enough entropy. And this is where TRNGs come in to play.

Truly Random, V1.0, 11.06.2015 9

1.4. Current State of the Art

Now that we have taken a closer look at the advantages and disadvantages of PRNGs, it
has become obvious that a combination of TRNG and PRNG would be the best practise for
cryptography. Especially for servers or network devices who need a lot of random input (e.g.
for encryption). Of course it is neither common nor convenient to purchase an expensive,
additional device solely for the provision of random bits. Nonetheless the interest in TRNGs
grows and there are already lots of companies who are providing so called hardware based
random number generators for that very purpose. These are some of the currently available
solutions:

Entropy Key, Simtec Electronics (UK)
USB-stick based solution who measures noise on components who
are under high voltage. The company describes the product as
economically priced (36£) and simple to use. There is no explicit
information about the performance.

qStream, QuintessenceLabs (Astralia / USA)
Server Module extracting random data from a built-in laserbeam on
quantum level. Strong performance with 1GB ”true” random bits
per second. Information about the pricing is not publicly available.

random.org, Randomness and Integrity Services Ltd. (UK)
Measurement of atmospheric noise using common radios who are
situated all over the world. Web-based service that can be accessed
for free for a limited amount of random bits per day. There is also a
pre-paid premium access, the costs depend on the amount of
random bits required per day.

Quantis TRNG, ID Quantique (Switzerland)
Quantum level measurement of photons who originate from a
collision of a light beam with a mirror. Available as USB-device or
as PCI / PCI Express module. The performance varies between
4-16Mbit per second and with prices between 1100 and 3000e this
is a rather expensive solution.

Truly Random, V1.0, 11.06.2015 10

OneRNG, Jim Cheetham and Paul Campbell (New Zealand)
A USB-Stick based solution which is organized as an open hardware
/ software project. The entropy is collected using a diode circuit and
a radio-frequency circuit. It is the only generator we came across
that is promising a full verifiability of hard- and software. The
Firmware is signed and the cover can be removed to verify the
built-in hardware components. With 350 kBit/s it might not be a
really fast solution but the pricing for the hardware is supposed to
be reasonable.

As we can see there are various approaches that differ in both performance and pricing. But
apart from the oneRNG project none of them does provide a possibility to verify the soft-
or hardware. Most importantly if we do not possess advanced knowledge in electronics or
physics, we will not even be able to fully understand where those devices are getting their
entropy from.

We must also mark that most companies are publishing impressive results of statistical tests
to underline the reliability of their generator. It is fundamental to be aware that statistical test
never are perfectly accurate. To really prove that a generator is providing ”true” randomness,
one would have to test its infinite sequence, which of course is just not possible. This means
that a real TRNG could fail a statistical test because of a long, seemingly biased sequence of
bits, but still be truly random when one would take a look at the bigger, infinite sequence.
Since we are limited by time, testing a sequence with a statistical tests will always be just a
fraction of the whole output and not fully representative. Furthermore, the output of a PRNG
with regular seeding could be disguised as a TRNG. The output could pass all statistical
tests, but anyone in knowledge of the seed-file could easily recompute the whole output on
another computer. Nonetheless statistical tests are important to determine tendencies of an
output, as we will see later on in our implementation. But it is important that we do not
take statistical tests as a guarantee for reliable, solid randomness and certainly not for true
randomness.

1.5. Comprehensibility and Verifiability of Random Number Generators

Now as we have seen previously most TRNGs produce random numbers in a context that
can only be fully understood by experts of the corresponding field. This leads to the actual
key point of our project, the comprehensibility and verifiability of TRNGs. The bigger part
of the users of such hardware random number generators will not be able to comprehend
how exactly those numbers are produced. More importantly, they will not be able to verify
that those numbers have not been influenced. This might sound like a small peculiarity, but
given the current circumstances this property represents a big security risk.

Truly Random, V1.0, 11.06.2015 11

There are various ways on how an attacker could influence such a device before it gets to
the end user. Firstly, since the latest NSA revelations one has to be aware that prominent
attackers do not shy back from intercepting product shipments to incorporate their own
soft- or hardware based back-doors [6]. Furthermore one has to trust the producers not to
implement back-doors during the manufacturing process. A risk that is not unfounded since
national surveillance programs often influence even private enterprise companies. Further-
more any company could get exploited by an attacker without their knowledge, which could
also lead to unplanned changes to such a product.

Our conclusion is, that to enable trust in a specific hardware random number generator,
we must be able to withstand such attacks. We think that this can be done by creating a
concept that detects whether hard- and software is acting the way it is intended to. This
implicates that the user must test the system on a really low physical layer, which also means
that the user must understand the very basics of the context used for entropy gathering. Our
attempt to create such a verifiability in a simple and understandable context is described in
the following chapters.

Truly Random, V1.0, 11.06.2015 12

2. Conception

After having clarified the current situation and the motivation of our assignment, we now
define the conceptional side of our thesis. The following chapters are introducing the concept
of our project. It is a refined summary of ideas, thoughts and solutions that we developed.

2.1. Our Approach

Our goal is to provide entropy with a hardware random number generator whereas the process
must be verifiable. To do this, we need a random phenomena that can be detected by a
simple camera. From the pictures taken, we must be able to then derive random values:

Figure 1: Basic setup of a camera based generator

To transport the values safely to a consuming server or host, the connection must be en-
crypted. Given that, we have the basic setup of a common TRNG. The key point is, that
anyone is able to understand that a picture is taken every few seconds of this random phe-
nomena. And that this picture can be displayed as numbers, or even bits. Whenever the
picture changes, the representation of bits will differ and hence we have a resulting stream of
always changing random bits, corresponding to the phenomena. Up to that point we do not
have the possibility to check whether those bits really are created from the picture. To get
rid of the black box process, one simply exchanges the motive of the camera with something
static, something predictable:

Figure 2: Verifiability of a camera based generator

This enables anyone to test whether the camera and the image processing are producing
reliable output and therefore represents the verifiability of the concept. We could even go
a step further and insert a changing motive instead of a static one, for example a short
excerpt of a movie. This would result in seemingly random output, but could be reproduced

Truly Random, V1.0, 11.06.2015 13

easily on a different machine and therefore tested. Any soft- or hardware based backdoor
can therefore easily be detected, since the resulting output would differ from the expected
verification results:

Figure 3: Intrusion detection due to verifiability

The real difficulty lies in finding a random phenomena that possesses such properties. Or
rather constructing a device that can produce such a phenomena on demand. In our project
we decided to use swirling objects in a ventilated tube. The concept can also be adapted to
any random phenomena that fulfills the preciously described requirements.

2.1.1. Preliminary Work

To enable a productive development project during our bachelor thesis, it was fundamental
for us, to address the topic in previous modules during the past semester.

In the scope of the module BTI7311 Computer Science Seminar, we studied the theoretical
background of random number generation and introduced it to our co- students.

Since the prototype signifies a big physical component, we also examined the feasibility of the
random phenomena in the module BTI7302 Project 2. The main focus was to produce a first
prototype, to show that entropy can be gathered from swirling objects in a tube with high air
turbulence. This was merely a proof of concept to show that we can extract ”something”.
How to increase the performance and quality of that ”something” and whether the retrieved
random data can be verified, transported and used on another system, was not addressed.

2.2. Generator Concept

Since we want to create random numbers with a TRNG, we need a corresponding random
phenomena. The easier the phenomena the better, since the most important thing is that
the phenomena is coherent and easily comprehensible for an end user. The best way to
understand phenomena is by watching it happen. Hence we decided to head for a phenomena
that is detectable by a camera and extract entropy from the images taken of the random

Truly Random, V1.0, 11.06.2015 14

phenomena. That way it would be easier for an end user to reconstruct the process of random
number generation.

2.2.1. Use Cases

We defined the following use cases based on the requirements we defined.

UC1 - Provision of random numbers
Our true random number generator provides entropy that can be seeded to an existing system.

Test Case UC1
The images taken by the camera are processed and transmitted to a target server. On the
server we can verify whether the data is available.

UC2 - Verifying the generation process
The generated random data is verified and therefore indicates any intermediate manipulation.

2.3. Server Concept

The server receives entropy from the random number generator, checks its validity and seeds
the data into the target PRNG of choice. The received entropy can be verified in coordination
with the generator.

2.3.1. Use Cases

UC1 - Use the received random data for seeding a PRNG
A given application is in need of random numbers and would like to profit from our random
number generator.

Test Case UC1
The server is seeding the received random numbers to a file or to a PRNG of choice. The
PRNG therefore increases its entropy account and the application is not blocked anymore

UC2 - Check the output during the verification
A system administrator is testing the generator and wants to verify the random output used
for seeding the server.

Test Case UC2
The system administrator checks the corresponding output files and compares the random
bits with the expected values.

Truly Random, V1.0, 11.06.2015 15

The seeding into a PRNG structure is the main goal of the server application. Since we
decided to seed the /dev/random/ device, we took a closer look at this PRNG.

2.3.2. The Fortuna PRNG

Fortuna was introduced by a collective of cryptographic experts. It is widely known since it
has been adopted in the /dev/random construct on Unix based operating systems. Fortuna
is known to be a quite robust generator, not mainly because of it’s algorithmic basics, but
rather because it takes great care on how and where it takes its entropy from.

The Fortuna generator can be divided into two main parts. First of all, there is the generator
core, which is running a block cipher in CTR mode. It is using a 128-bit counter as input
and encrypts it with a given random key, which gets reseeded continuously. This main part
of the generator does not differ from other common PRNGs, it is able to provide reliable
random data, given that the attacker does not know about the random key.

Figure 4: Generator of Fortuna

The other main part is the entropy accumulation. It provides entropy for the reseeding of
the previously mentioned random key. But rather than using the entropy from a predefined
source as most PRNGs do, Fortuna is using entropy from a elaborate system of different
entropy sources.

Truly Random, V1.0, 11.06.2015 16

Figure 5: Fortuna overall structure

It uses so called entropy pools, where entropy from different sources are stacked. Fortuna
is using 32 pools, but retrieves entropy only from those, who are dividable by the current
128-bit counter value. Hence, bigger pools are rarely used, and lower pools more often. The
consequence is, that bigger pools such as pool 29, 30 or 31 are buffering a lot of entropy,
thus they are usually able to seed the whole key on their own once they are used. This leads
to the big advantage that Fortuna is able to recover from attacks. For example if an attacker
controls an entropy source and retrieves the internal state. In that case, the attacker is able
to predict any future outputs, yet after some rounds a higher entropy pool is going to reseed
the key and reset the internal state. This is a very strong property, which also shows that
one reliable entropy source (even if not that performant) can add a lot to the security of a
generator.

Furthermore Fortuna is continuously seeding a so called Seed File during run-time. The
purpose of this file is to provide entropy during start-up. If a server needs to restart, he is
usually not able to provide a lot of entropy. In case of Fortuna, the server will just use the
content of the Seed File to reseed its key and hence will be able to provide random output
even if it was shut down for example by a Denial of Service attack.

Truly Random, V1.0, 11.06.2015 17

2.4. Transmission Concept

The main question about the transmission was what medium should be used to transport
the random data from the generator to a server.

Our first thought was to use Ethernet or rather, TCP/IP. Mainly because it is an established
way of communication and because it would also offer the distribution of random bits to
multiple servers in the same network. When we started setting up a concept for authentication
and encryption, we quickly realized that it might offer too many attack opportunities for an
attacker.

The main weakness of a random generator, is the fact that he is providing random numbers
for a server who is in need of entropy. More closely, one has to assume that the server does
not possess enough entropy when he is initially connected to the generator. Hence the only
way to authenticate or encrypt such a connection, is to exchange a shared secret over a safe
channel.

This was the main point why we decided not to use Ethernet. Because the encryption will
solely base on the initial secret transmitted via safe channel and be vulnerable to brute forcing
attacks on the long run. This also means that a refresh of the key using one of the common
key exchange methods (e.g. Diffie Hellman) would be of no use, since any new key would
be derived from the previously transmitted random data. Therefore a key exchange would
not provide any additional security.

We therefore decided to use a simple peer to peer USB connection instead. This offers us
more safety and privacy, since it way more difficult to listen in on a peer to peer connection
than into network traffic. Furthermore there usually is an empty USB slot on any server,
whereas network interfaces are usually scarce since and mostly already occupied.

2.4.1. Initialization and Authorization

At the very beginning of the transmission, the generator and the server must retrieve one
another. The USB port can be figured out quite easily, if necessary the user can be instructed
to plug in the USB cable during the start up of the application, to make the retrieval easier.

Even though we are using a USB cable to connect, we must assume that one way or another
a attacker could influence this data-stream (e.g. via USB hub or other USB devices). To
make sure that the server and generator are resistant against various attacks (see section
2.5.2), authentication is fundamental. As we have previously stated, we must assume that
the server does not possess any entropy and hence we need to exchange a secret on a safe
channel.

We chose the length of this secret accordingly to the current standards of encryption [7].

Truly Random, V1.0, 11.06.2015 18

Since we decided to use a symmetric encryption (AES), we fixed the key-size to 256 bits.
Once the secret is retrieved by both parties, they are starting with the authentication phase
via USB.

Figure 6: Authentication setup

Firstly, the generator is sending an encrypted authentication packet containing a predefined
static value, using the previously exchanged secret as a key. The server can then verify the
authenticity of the generator by decrypting the packet and checking the predefined value.
This procedure is then repeated on the server side, using another predefined value.

2.4.2. Transport of Random Data

Now that both sides are authenticated, we can exchange the random data. To obtain fresh-
ness of the packets and avoid replay attacks, we add a sequence number to the random data.
The sequence number is incremented on both sides (generator and server) and encrypted
together with the random data. This enables the server to detect and drop invalid or forged
packets sent by an attacker.

Truly Random, V1.0, 11.06.2015 19

Figure 7: Data transmission

To make sure that the server does not blindly seed any data received, we send an acknowledge
packet back to the generator for every ”data” packet. This acknowledgment package contains
the hash value of the previously received data packet. The generator is then testing whether
the received data is valid and sends the next data packet.

Figure 8: Corrupt data handling

If the data is invalid, the generator must be able to inform the server. To this and to enable
further development of this data transmission concept, we added a additional flag-byte to
the data packet. For now this only represents valid data (0) and corrupt data(1). Every
ingoing data packet is therefore initially buffered by the server and not yet used for seeding.
If the following packet contains a corrupt flag, the packet can be dropped. If the next packet
follows, it can be safely used for seeding.

Truly Random, V1.0, 11.06.2015 20

2.4.3. Timeout and Offline Mode

As we will see in the next chapter, it is important to handle interruptions of the transmission.
To do so, we defined timeouts for both generator and server. If one component does not
receive a valid answer from the other until the timeout expires, they are going to enter the
offline mode.

If the transmission is in the state offline, it is properly authenticated, but has not been
successful in transmitting data for a rather suspicious period. This can be caused by a
temporarily interruption of the connection, by damaged hardware or even by an attacker. In
the offline mode both server and generator are supposed to check for new data packets less
frequently to avoid performance issues and since the other site is apparently not available at
the moment. It is also important to inform the system administrator about this interruption.
In the case of our prototype, errors are written to the log file, error messages are printed on
the graphical user interface and even an audio warning is emitted.

2.5. Risk Assessment

Since this concept is going to influence a fundamental mechanism of the security of a system,
we must analyze possible security threats arising with it. We analyzed possible threats on
the three main components generator, server and transmission.

2.5.1. Generator Security

Firstly, and most importantly, we must face the security related risks of our generator.

Hard- or Software Intrusion - Backdoor
A probable attack on the generator would be the incorporation of a hard- or software based
backdoor into the generator. Most certainly this would be a common PRNG structure who
is producing outputs based on a seed file which is known by the attacker. Therefore the
attacker could compute all outputs on another computer and reproduce every single random
bit.

Countermeasures
This attack could easily be detected by the test procedure, since the output would not match
the expected values from the verification of the generator.

Advanced attempts
To dodge the test procedure the introduced backdoor construct would have to recognize
at what point the generator is tested and pause its malicious behaviour during the test
procedure. One way to do this would be by using a sophisticated image processing strategy

Truly Random, V1.0, 11.06.2015 21

which tries to fingerprint the insertion of the test image. It is highly questionable whether even
a sophisticated image processing algorithm would be able to distinguish between the inserted
and ”real” picture. This also depends strongly on the implementation of the mechanics (e.g.
whether the illumination changes during the verification procedure). Another attempt would
be to add a second camera or a photo sensor, to detect solely the insertion of a verification
module.

Especially the latter attempt would need a tremendous effort, since the camera or a sensor
could be detected by the customer if he opens the generator during installation (the smaller
the camera, the more expensive). Furthermore those components would need to be attached
to the microcomputer which is easy to detect, even for an end user.

Our conclusion is, that advanced attacks on the generator would be too costly even for a
strong attacker. And it would be too likely that they get detected by the end user. Hence
we consider the generators as very resistant against attacks.

2.5.2. Transmission Security

Another attack vector would be the transmission from the generator to the server.

Wiretapping
An attacker might try to determine the transmitted random data, so that he can reproduce
the seed values for the server PRNG and hence the output of the PRNG. To do that, he is
going to try listening in on the conversation between the generator and the server.

Countermeasures
Firstly since the transmission is done via an USB peer to peer connection it is extremely
difficult to establish a foothold on the transmission. Even if the attacker manages to listen
in on the conversation (e.g. via infected USB hub), the data would still be encrypted.
The attacker would have to break the initial 256bit secret. He would need to transmit this
initial data and brute force the secret on an infected computer in or outside the network. The
transport would have to be done either over a infection of the server or by overcoming the air-
gap, which is a technique that has not been exploited on level of a USB device. Furthermore
even if the secret is broken, an attacker would still have to transport the retrieved random
data to his attacking computer. This must be done over the target server or by overcoming
the air-gap. Once this is done, the random data stream would create a immense noise in the
network, which is going to be easily detectable for network administrators.

Man in the Middle
An attacker might even try to go a step further and establish a man in the middle attack.
This would enable him to replace the random data with its own pseudo random data. In this
case, he would need to break the initial secret as well.

Truly Random, V1.0, 11.06.2015 22

Countermeasures
This setup corresponds to the previously described attack. The attacker would also need
physical access to the USB cable. Apart from just breaking the secret, the attacker would
also need to maintain a PRNG somewhere, who is replacing the sent data with its own pseudo
random data. This attack can easily be discovered by during the verification procedure, if
done properly. It just takes a simple comparison of the random data on generator and server
to find out that the data differs.

Given these circumstances, we strongly believe that our transmission concept is resistant,
even to strong attacks. But only if the verification / test procedure is done properly and
regularly.

Denial of Service attack
Another quite effective attack is to prevent the server from receiving entropy. To do this an
attacker might try to block the transmission. This could for example to be done by using an
infected USB hub who blocks the traffic between the server and generator after a few data
packets.

Countermeasures
By doing that, both server and generator application would fall into the offline mode. Since
we do not plan to include a web server into our server application, the real challenge is going
to be to inform the user about such a fact.

2.5.3. Server Security

Lastly an attacker could also directly attack the server to disrupt the random number gener-
ation. It even seems to be the most likely attack vector, since it is the only component that
is connected to the outside world.

Denial of Service (DoS) attack
The most probable attack would be if an attacker launches a DoS-attack towards the server.
The server will shutdown unexpectedly and lose its initial 256 bit secret. Once restarted, he
will not be able to reconnect to the generator and will lack of entropy.

Countermeasures
There are different approaches to deal with this problem. Since our system does not offer
a way to directly contact the system administrator and inform him about the interruption,
we had to take a more serious approach. We decided to save the secret key, as well as
the current sequence number locally on the server during run time. This is fully based on
the assumption, that the server is not infected and the hard disk is encrypted accordingly.
That way, when the server is starting up the application, it can simply check whether such
a ’hook’-file exists or not. An existing connection can then be retrieved, since the generator
is still in offline mode and the server can reproduce the connection using the secret and

Truly Random, V1.0, 11.06.2015 23

sequence number.

Infected Server
We did not investigate this scenario in depth, because providing randomness simply becomes
useless once an attacker gained foothold on the server. On an infected server an attacker
could weaken the security in various other ways. Mainly an attacker would take actions before
the data is even encrypted. He might even use the provided random numbers to encrypt and
transmit confidential data to a command and control server. The only possibility to verify
such a intrusion, would be to compare the seeded data with the data on the raspberry PI.
But this could be as well manipulated by the attacker and would include, that the attacker
is still working against encryption instead of just moving around it which would the most
uncomplicated way if he gained access to the server.

2.5.4. Trust Assumptions

As for most security related systems, it is vital to make as few assumptions as possible.
Given the previously described scenarios, we nevertheless had to fix some points to be able
to guarantee the safety of our concept.

Assumption 1 : Safety of the system infrastructure
All components of our system are during run-time not physically accessible for potential
attackers.

Assumption 2 : Safety of target host
The target host / server, to which the random data is transmitted, is not controlled by an
attacker. This mainly means that the resources of our application on the host / server are
not accessible or modifiable by an attacker.

Assumption 3 : Test procedure is done properly
The predefined test procedure of the components is done by a human continuously, in random
sequences. During the test procedure we assume that we have a moment of privacy.

Assumption 4 : Resistance of test procedure
The estimated effort to bypass our test procedure might be possible for strong attackers, but
would require a tremendous effort and as a result be too expensive for the outcome.

Apart from the security related risks, as in every development project, there is a chance that
our concept or ideas can not be implemented as planned or do not work as anticipated. To
minimize such failures, we tested the functionality of our prototype beforehand as a proof of
concept (see section 2.1.1 Preliminary Works).

Since we are aiming to produce a functional prototype rather than a final product, our thesis
does not include any economical prospects. Hence it will not include any risks concerning

Truly Random, V1.0, 11.06.2015 24

sales and distribution.

2.6. Testing randomness

To have a point of reference whether the random data produced by the prototype is random
or not we read up on different ways to test for randomness.

A good random number generator will always produce small sequences that do not seem
random, but are random nonetheless in the bigger picture. Therefore it is quite a difficult
task to prove that a sequence, (or a produced output of a random number generator) actually
is random.

2.6.1. Statistical randomness tests

The usual, theoretical approach for testing randomness is to take many sequences of a
random number generator and feed them into statistical tests. Because a good random
number generator will also produce sequences that will not look random at all, the idea is
not to judge only on the criteria of failed or passed tests but to get a broad view over the
whole generated random output. If the majority of data sequences pass the tests it will most
likely be of good quality. Many failed tests on the other hand, should raise suspicion and
induce further analysis.
Up to this day, there are many different statistical tests, the first of them being published by
M.G. Kendall and Bernard Smith in 1938. In 1995 George Marsaglia published different and
more advanced tests.

Kendall and Smith differentiated ”local randomness” from ”true randomness”, implying that
a true random source may fail these test for some sequences and thus not be locally random
[13]. The tests from Kendall and Smith are based on the hypothesis, that all numbers and
patterns that formed out of the sequences are distributed with the same probability. They
are relatively easy to understand:

The frequency test is the most simplistic of all.

It tests whether each number occurs more or less the same amount of times.

E.g. well distributed random numbers: 0: 808, 1: 801, 2: 820, 3: 799, ...

E.g. badly distributed random numbers: 0: 408, 1: 801, 2: 1020, 3: 599, ...

The serial test and the poker test are working in a similar way. But rather than numbers,
they test the occurrence of a sequence of numbers. Whereas the Serial test checks sequences
of the length of two (e.g. 00, 01, 02, ..) and the Poker test checks sequences of five (e.g.

Truly Random, V1.0, 11.06.2015 25

00001, 00002, 00003, ..) numbers.

Finally the gap test checks for the number of decimals between certain numbers. If the
difference of those gap is continuously too small, there is a repetition in the random number
generator. E.g. the gap between zeros in the sequence 026590 is 4, in the sequence 050
only 1.

There are various statistical test that are more recent, for example comparing numbers
and patterns in a three-dimensional way. Due to the in-depth statistical and mathematical
structure of those tests we avoid a detailed explanation of such tests.

2.6.2. Human perception

Methods for getting an overview over a big sequence of apparently random numbers often
involve the human perception. The human brain is an excellent pattern recognition machine
and performs the complex task of seeking and recognizing patterns better than any computer
or other deterministic machine. This finding is also used in other areas (e.g. Random Art
[16]). In randomness testing, this advantage can be used in different ways to detect possible
repetitions or patterns in a random source.

Random walks

Random walks can be performed in multiple dimensions, although the following chapter only
covers two dimensional walks. One possible way to explain the random walk is as a person
walking on a two dimensional grid having to decide whether to go left, right, back or forward
after each step. If this decision is made by a random source, a map is generated allowing
the observer to see either a path that is totally random or an apparently random walk that
tends to go into one direction when looking at the entire generated path.

Truly Random, V1.0, 11.06.2015 26

(a) More random input [14] (b) Less random input [15]

Figure 9: Comparison of two two-dimensional random walks

Figure 9a shows an evenly distributed random walk whereas figure 9b has a general direction
in which the path moves. The latter is an excellent example for a seed that may look
random when observing a local spot but fails to meet the requirements of random given the
big picture.

Truly Random, V1.0, 11.06.2015 27

Graphical pattern recognition

A digital information, for example an array of bits can be represented using a bitmap, also
referred to as raster graphics. A simple black and white bitmap for example, can represent
an array of bits by simply filling out a field either in black if it is a 1, or in white if it is a 0.
If a random sequence is fed into a bitmap, it is possible to spot visual patterns immediately,
instead of having to use a complex statistical test.

A good example is the comparison between a random seed from random.org and PHP’s
rand() function, performed by Bo Allen [17].

(a) Random.org bitmap (b) PHP rand() bitmap

Figure 10: Comparison of bitmaps between random.org and PHP rand() [17]

Figure 10b clearly shows a pattern in a vertical and rippled fashion and illustrates a bad
example. However, this method is not a fail proof indicator for the actual quality. Some
random seeds will not show visible patterns even if they contain repetitive behaviours.

Auditive pattern recognition

A digital information can also be fed into a digital to analog converter (DAC) which converts
the meaningless binary information into an analog signal. This is one of the tasks that a
regular sound card in a computer does. The amplified signal can be emitted as sound waves
when connected to speakers and similarly to observing the bitmap, an eventual pattern in
the random source could be heard as a regular tick, a repeating change of the noise or as
any other pattern which would give a hint to poor quality of the random source.

Truly Random, V1.0, 11.06.2015 28

2.7. Requirements

To be able to distinguish between necessary and optional components, we must define what
basic requirements the system must fulfill.

The following requirements represent the fundamental properties of our generator prototype.

R.1 A concept for the verifiability exists

R.1 The prototype is able to produce entropy

R.2 The derived entropy can be transmitted to another host

R.3 Even in an infected network, the transmission of the random data can be granted

R.4 The target host is able to seed its local PRNG with the received random data

R.5 The whole process of entropy gathering and transport can be verified by a simple
challenge response process

R.6 The development and the system itself is documented in a comprehensible way

R.7 The architecture of our prototype enables future development and improvements

2.8. Goals

Given the requirements we now can fix specific goals for our thesis. They show what steps
have to be taken to satisfy the previously defined requirements. Since not all goals are
similarly important, we added a corresponding criteria about their severity in relation to the
project:

1 Extremely critical: A fault in the main functionality, the realization of the project is
questionable.

2 Critical: A fundamental restriction of the functionality, the requirements will not get
fulfilled entirely.

3 Basic: The Project can be realized but there is a high probability of inaccurate results.

4 Advanced: The Project can be realized, but some components will be missing

5 Optional: An irrelevant component will be missing, has no real impact on the project.

Truly Random, V1.0, 11.06.2015 29

Since our project consists of different components, we can structure the different goals into
the following main topics.

Prototype Related Goals

The primary part of our thesis is to produce a stable prototype. During our thesis we are not
only going to develop corresponding software, but we also must provide a stable prototype
in terms of the physical properties. Hence we must define some goals that must be achieved
in order to provide physical stability:

Goal Severity Description

G1.1 1 The prototype extracts entropy

G1.2 2 Structural issues are resolved (e.g. ionization, darkening)

G1.3 3 A default configuration setting for all external factors has been defined.
(e.g. air supply, exposure time, illumination..)

Table 1: Prototype Hardware Goals

If the physical goals are reached, there still is a big part to achieve by means of Software.
Our prototype must fulfill the following goals:

Truly Random, V1.0, 11.06.2015 30

Goal Severity Description

G2.1 1 A functional image processing is implemented

G2.2 2 The produced random data can be sent to a target host

G2.3 3 A default strategy / configuration for image processing is set

G2.4 3 It is possible to initialize a connection to a target host via user interface.
(e.g. numbers, QR-codes)

G2.5 3 A visualization of the verbose data is implemented on the user interface

G2.6 4 Basic configuration of parameters can be done via user interface

G2.7 5 A life view of the camera can be accessed via user interface

G2.8 5 Additional features for analysis of the random data

Table 2: Prototype Software Goals

Host / Server Related Goals

Apart from the generator prototype, we also have to consider what we want to achieve on a
target host / server, who is consuming the produced random numbers.

Goal Severity Description

G3.1 1 Random data can be received by the target host / server

G3.2 1 The received random data can be tracked on the host system
(especially during the test procedure)

G3.3 3 Random data can be seeded into the /dev/random construct

G3.4 3 The received data can be extracted or directly fed into statistical tests

G3.5 5 Enable usage of the random data for other applications (e.g. Save as File)

Table 3: Server Related Goals

Truly Random, V1.0, 11.06.2015 31

Data Transmission Goals

Additionally, the random data must be transported from generator to a target server.

Goal Severity Description

G4.1 1 The provided random bits can be transmitted to the target host

G4.2 2 The transmission is safe, even in a infected network

Table 4: Data Transmission Goals

Conceptional Goals

Given the previous goals, we have a stable prototype of a generator, transport and server
application. Yet we still have not met our most important requirement, the verifiability.

Goal Severity Description

G5.1 1 The entropy accumulation can be verified with a corresponding test procedure

G5.2 3 The results of the testing procedure are verifiable on the target host

G5.3 4 The System documentation is coherent and enables further development

Table 5: Conceptional Goals

Truly Random, V1.0, 11.06.2015 32

Truly Random, Version 1.0, 11.06.2015
33

2.9. Project Schedule

Figure 11: Project schedule

To create a project schedule, we started at the very end of the project and tried to determine which issues have to be solved before reaching that
specific point. Traversing the whole project in that manner, enabled us to fix the most important points in our project. Of course this schedule is
just a first approximation and will change during the project. Hence the task project planning will be a continuous task during the whole thesis.

2.10. Milestones

The resulted milestones can be characterized by two main properties. On one hand, every
milestone stands for a set of issues or tasks that have to be resolved upon that point. On
the other hand, every milestone signifies risks that could occur, if the milestone can not be
reached in time.

2.10.1. Phase Planning

Milestone 1.1 Planning, due 05.03.2015

This milestone represents a stable first planning of our project. It includes fundamental
questions such as requirements, goals and how they are going to be achieved. Furthermore
we must provide a documentation that shows what initial situation we are facing in our
project as well as defining its scope.

If we are not able to provide a systematic structure for our project, we are not going to be
able to prioritize the different aspects of our project. This could lead to dead ends, or more
fundamentally we most likely would not be able to achieve our goals in time.

Milestone 1.2 Orders and Consultations, due 12.03.2015

Some components of our project must be bought since they can not be provided by our
University. Furthermore there are topics in our thesis in whom we do not have in depth
knowledge, such as image processing or 3D-Printing. To minimize failures in such areas, we
want to consult with corresponding experts at our university before we decide what measures
we take.

If this milestone is not reached, this simply means that either we are missing some components
for our prototype and will not be able to build the physical prototype in time. Or we did
not manage to clarify all weak points, which would increase the chances of a failure in the
corresponding areas.

Milestone 1.3 Software Architecture, due 12.03.2015

To increase the quality and efficiency of the software it is essential to create a concept first.
We need to think about how our software will be used and hence how the architecture should
look like. This includes thinking about which patterns could be of use and how they could
be applied to the software.

If we do not have a concept for our applications, we might run into architecture based
problems. Moreover, our code will not be as easily understandable and the co-working as

Truly Random, V1.0, 11.06.2015 34

well as further development might get difficult. This all could end up in lacking efficiency
and therefore loss of time.

Milestone 1.4 Data Transmission Concept, due 19.03.2015

Since we do have two different applications, it is indispensable to think about how they are
going to communicate with one another. Moreover we need to think about how we can
provide a secure communication between the two nodes.

If there is no clear concept on how the transmission is done, we may run into functional
problems and we might not be able to provide the desired security.

2.10.2. Phase Implementation

Milestone 2.1 Prototype Hardware, due 23.04.2015

At this point, the prototype should be in its final state concerning the physical elements. This
means that we are done with 3D printing and do not need any more physical components.
We possess a stable physical environment.

If we do not have a physically stable prototype at that point, we are not going to be able
to calibrate optimal configuration settings for further tests. Aspects such as brightness or
density might influence image processing and its results, which will end up in inaccurate
results and additional time expenses.

Milestone 2.2 Image Processing, due 30.04.2015

Reaching this milestone, means that we have informed ourselves about image processing.
Furthermore we decided which image processing strategy is the most suitable for our project
and implemented it in our software.

The image processing is the core function of our prototype software. It has a big influence
on the performance of the prototype as well as on the quality of the derived entropy. If we
fail to implement it at that point, we can not go on with the fine tuning of the configuration
and we do not have any indication about how our prototype will perform and how much
entropy we can gather.

Milestone 2.3 Prototype Software, due 07.05.2015

The configuration and administration of the prototype can now be done using the touchscreen
application of our prototype.

Truly Random, V1.0, 11.06.2015 35

If the administration via touchscreen application is note yet possible, future tests are going to
take a lot more time since configuration changes will have to be synchronised on the raspberry
PI first. Furthermore we need the touchscreen application to verify that the authorization
during the transmission setup is working properly.

Milestone 2.4 Server Software, due 07.05.2015

The server application is up and running. The application is able to seed the /dev/random/
construct of the underlying server operating system with data received from the prototype.

If the server software is not running at that point, we will not be able to fully test and imple-
ment the data transmission as well as the verification process between server and prototype.

Milestone 2.5 Data Transmission, due 14.05.2015

The data transmission is implemented on both prototype and server and enables safe trans-
mission of the gathered random data.

If this is not the case, we are unable to go on to the next phase. We will not able to fine
tune our configuration an will not be able to make a statement about the performance and
verfiability of the generator.

2.10.3. Phase Testing

Milestone 3.1 Default Configuration, due 14.05.2015

We have fixed an acceptable default configuration for both server and prototype.

The default configuration is important so that we can analyze the data as well as performance
of our approach. We also need to run long-term tests and check how resistant to prototype
is to interrupts.

Milestone 3.2 Test Procedure, due 21.05.2015

The test procedure has been verified and is now a straightforward, documented process rather
than a concept.

If we fail to define the test procedure in a easily applicable way, we risk to discourage possible
end-users in regularly performing it. This is particularly important because the test procedure
stands for the most important property of our prototype, the verifiability.

Truly Random, V1.0, 11.06.2015 36

Milestone 3.3 Performance Tests, due 28.05.2015

Various performance tests are done and corresponding results are added to the documen-
tation. This includes the performance of the transmission, the image processing and the
seeding on the target server. Furthermore we have seen how the application acts during
long-term use.

The information about the performance is an important piece of our documentation. It can
be used to situate our solution amongst other currently available random number generators.
It also implies whether our random phenomena is suitable for a more advanced prototype or
even for a product.

2.10.4. Phase Conclusion

Milestone 4.1 Documentation of Testing, due 04.06.2015

At this point we added the findings of our test phase to our documentation. This also means
that all previous contents already have been added.

If we do not reach this milestone in time, we will be under pressure when it comes to providing
a coherent documentation for our project.

Milestone 4.2 Overall Documentation, due 09.06.2015

The documentation has been reviewed, re-factored and the layout has been changed accord-
ingly. This also includes the update of illustrations, references, acronyms and glossary.

If we fail to provide a coherent documentation we might not be able to present our project
in a persuasive way. Furthermore there would be a big risk that the project will not be
continued after our thesis and will fade.

Delivery, due 11.06.2015

The documentation is delivered in its final version to the expert and tutor.

Truly Random, V1.0, 11.06.2015 37

3. Implementation

To enable a full understanding of how our system works, the following section documents
how we implemented our prototype. It shows which hard- and software we used and how we
realized the previously described concepts in that specific context.

3.1. Main Concept

Our prototype is based on the assumption that Styrofoam beads in a ventilated tube provide
enough entropy for random number generation.

The principle itself is rather simple. We use an air box that produces a strong air flow. The air
moves through a transparent tube and stimulates the contained Styrofoam particles. Apart
from the air stream, the particles influence one another so that their movement becomes
unpredictable.

Figure 12: Main Structure

To extract the entropy, pictures are taken in a regular interval and processed into random
bits. These random bits are then encrypted and transmitted via USB to the target server.
Since it is highly probable that our prototype will not have a high performance, we assume
that the target server will use the random input to feed a local PRNG. In our prototype setup
we will seed the /dev/random/ device as described earlier.

Truly Random, V1.0, 11.06.2015 38

3.2. Development Environment

Setup Prototype
As a generator platform, we used a Raspberry Pi 2 with a 32GB SD-Card, running the
Raspbian operating system. The pictures are made with a PiNoir camera. The software is
written in Java. We used a Git repository to for source code management and Maven for
dependencies and the build process, including deployment.

Setup Server
To simplify the process of testing the server application, we decided to use a UNIX based
operating system on a bootable USB-stick. We installed a Ubuntu 64-bit LTS Server on a 16
GB USB stick, which we used with common workstations at our university for test purposes.
Since we did not have specific requirements concerning the server platform, we did not test
the application on any other operating systems. Nevertheless we assume that applying the
software to another UNIX-based system can be done without big efforts.

The software on the server is written in Java and organized in the same manner as the
prototype. The source code is pulled from the Git repository and the build process is organized
by maven.

Repositories and File-sharing
To enable a uncomplicated and flexible development process, we decided to store our data
centralized and easily accessible.

The development of both prototype- and server application was managed by using two
corresponding Git repositories. The repositories were hosted on the free source code hosting
service bitbucket (www.bitbucket.org).

The whole documentation was written in LaTeX. Since manging the documentation via a
repository is not ideal, the whole documentation was hosted on ShareLaTeX (www.sharelatex.
com). ShareLaTeX is a free online LaTeX platform which includes an online editor with real
time editing and multi-user access. This offered us huge flexibility, and since the service is
free for up to 2 collaborators it did not involve any costs.

3.3. Prototype structure

The structure of our prototype can be divided into an air source and an enclosed tube.

In an early stage version of our semester project we implemented this using a simple tube
covered by nets with a fan placed under it. This lead to several problems, for example
the lack of turbulence and the inability to easily change parts and experiment in order to
maximise entropy.

Truly Random, V1.0, 11.06.2015 39

www.bitbucket.org
www.sharelatex.com
www.sharelatex.com

The intention of the next prototype was primary to gain modularity and stability. We wanted
to have a structure that allowed us to change the tube part to experiment with different
settings.

Moreover, the design should improve the overall stability of our system.

Since it is rather difficult to meet all these requirements while constructing something with
existing parts we decided to design a model and print it on a 3D printer.

After doing some research we discovered the free accessible CAD tool tinkercad ??. Tinkercad
runs completely independent inside a browser and provides a rather easy way to design 3D
designs. We worked trough the tutorials and spent some time learning the basic functionality
needed to design our prototype.

The construct can be divided into the following parts:

Air box
A modular source of turbulent air is achieved by an air box. It should be constructed in a
way that the fans can be be mounted so that they combined produce enough air pressure
to move our particles in the tube. As we were advised from an automotive engineer that we
contacted, the inside of the air box should provide a way to insert wind chimes so that the
resulting air flow becomes turbulent.

We designed the air box so that it contains mounts for eight 80mm computer fans. The
mounts consist of a hole that the air flows through and four screw-holes in the standardized
dimensions for computer fans.

On top of the air box is an indentation that will hold the fitting tube connector. The
indentation is the exit point for the turbulent air.

Inside the air box we added several anchoring supports which will hold the air chimes.

To enable a better understanding and for the sake of controlling the fans we added number-
ings in the design.

Truly Random, V1.0, 11.06.2015 40

Figure 13: Airbox

Tube
The tube is the simplest part of all. It must be transparent and enclose particles.

We used an existing plexiglass tube that we cut into the desired size. It needs a modification
so that the bolts of the enclosing parts can be locked in.

Figure 14: Tube

Truly Random, V1.0, 11.06.2015 41

Tube connector and tube hat
The tube connector and the tube hat are the parts that enclose the tube. They have to hold
back any particles inside the tube and enable air flow through it.

In a first version we constructed the grids of the tube hat and the tube connector using
rings that slightly overlapped. In Tinkercad each object is made from a set of basic shapes.
A Tube for example can be created using a cylinder and a smaller cylinder inside it that is
defined as a hole. When the two objects are merged together, it is visualised as the resulting
objects while still holding the individual parts.

This resulted in a disadvantage for our specific application. The grid was so finely coursed
that the design held too many parts for it to compute. We had a finished design of the two
tube parts that both refused to group since the browser application was on its limits. We
tried exporting the STL files in order to open in it in a standalone application. Tinkercad
however does not provide a version that can be used offline.

We did try to install a similar product from Autodesk called 123D Design but it was not
possible to transform our designs using the Autodesk account.

Another option would have been the open source 3D software 3Dmax but considering the
huge amount of training necessary to use it we decided to revise our design in Tinkercad.
This resulted in a complete redesign since the existing designs were too unstable to fix them.
The new grid is now designed with fewer components using long rectangles that intersect
each other. The gap size in between them is chosen so that the Styrofoam balls can not
escape. To enable a stable connection we added bolts to the hat and the connector so that
they can locked inside prepared holes in the tube.

Figure 15: Tube connector

Truly Random, V1.0, 11.06.2015 42

Figure 16: Tube hat

3D printing the designs
The printing of the finished designs proved to be quite challenging. According to our professor
there is a 3D printer available at our department. We contacted the HFTM which is located
inside the BFH estate since the were in possession of an advanced 3D printer. To get a
quote and ensure the feasibility we sent in the STL files of our design. After some time one
of the employees contacted us since two of the files could not be opened. We visited them
in the lab and re-exported our files since they appeared to be damaged during compression.
At this point we learned that the air box would take around 40 hours to print, depending
on the resolution used. HFTM is in possession of a printer model called ”Dimension Elite”.
This is a really expensive printer that seemed optimal for our prototype since it is able to
print larger objects as well.

To compute the time and material necessary the software CatalystEx calculated each resulting
layer that will be stacked by the printer.

The two files of the tube that were not opening in CatalystEx took a longer time to calculate
which we explained by the fine grid. We agreed on letting it calculate through and the
employee assured to contact us once the calculation was done and send us the complete
quote containing the prices depending on the printing time.

The day after we got an email from him saying that he could not compute our two tube
files. At a rate of CHF 12.-/hour of printing resulted in a price of 510.- up to 770.- just for
the airbox, depending on the resolution used. This price was outside our budget and seemed
unreasonable since this would be enough to buy our own printer. Furthermore they were not
able to print the two key parts of the prototype.

After getting a hint from a classmate we contacted FabLab Bern to get a quote for our parts.
The responded with two calculations:

Truly Random, V1.0, 11.06.2015 43

Calculation based on CHF 1.-/minute of printing:

• tube connector: CHF 284.-

• airbox: CHF 916.-

• tube hat: CHF 230.-

Calculation based on CHF 2.-/cm2 of material

• tube connector: CHF 85.20

• airbox: CHF 358.60

• tube hat: CHF 89.30

He mentioned that with the overlaps of the air box and the fine grids of the tube parts the
first calculation would be more realistic but also stated that we could buy our own printer
for this amount of money. In order to save money he advised us to plan the air box with
wooden parts and use a laser cutter to cut them out. This however, would again result in a
complete redesign since our models were not made for laser cutting. Therefore we decided
to print our models, but make another modification to save printing time.

The new air box is now divided into two separate parts that can be printed individually. This
results in the advantage that it does not contain overlaps and therefore saves printing time,
since the printer does not have to make supporting structures.

(a) Bottom of air box (b) Top of air box

Figure 17: Resulting air box split in two parts

The final models were printed by FabLab in Berne.

Truly Random, V1.0, 11.06.2015 44

3.4. Electronics

In addition to our structure we used several electronic parts.

• Power source

• Fans

• Light Emmition Diodes (LEDs)

• RaspberryPi 2

• Camera

• Touch screen display

• Speakers

System overview
We wanted to be able to control and configure our entire system from within the software.
In order to achieve this we needed a way to control the speed of the fans, the brightness of
the LEDs and the parameters for the camera.

Power supply
We developed the prototype in a way that it only needs one cable to power it.

The system needs both a 12V circuit for the fans as well as a 5V circuit for the RaspberryPi
and the LEDs.

We modified a power supply from a router that has both voltages necessary. It is rated at
5V DC, 3A and 12V DC 2A.

This perfectly fits our needs. 5V, 3A is enough to power the RaspberryPi, the LEDs and the
display on the 5V rail. 12V, 2A is enough to power all the fans which combine pull around
0.8A.

The power supply has a Remote On Off (ROF) connector that has to be grounded for the
supply to work.

The 5V cable is directly connected to the 5V rail of the RaspberryPi which is also connected
to the USB 5V line.

The 12V cable is connected to the plus pin of the fans.

Both circuits share the same ground which is inevitable for the fan control to work.

Truly Random, V1.0, 11.06.2015 45

Fan control
During earlier research we found out that fine tuning the air flow is an essential part of
creating turbulence. Because of this reason and because it is hard to predict the necessary
amount of air pressure in a changing system we decided to make the fan speeds variable.
This comes with another advantage by means of modularity since the air box is not made
for one specific tube but rather acts as a source of variable air flow that can be adapted to
any part that connects to it.

The fans in our system are driven using Pulse-width modulation (PWM).

PWM is a method for controlling analog components using a digital signal This PWM signal
is a square-wave with a fixed frequency that switches between On and Off.

The pulse width is the amount of time that the signal is On in the period given from the
frequency. Altering or modulating the pulse width can change the signal between fully On
and fully Off.

The ratio between On and Off is called the duty cycle and is commonly noted in percentage.

In most cases the PWM signal is supplied from a micro-controller which can not output high
currents. Because of this reason most applications are not powered directly by the signal but
rather by using an amplifier in form of a transistor or metal–oxide–semiconductor field-effect
transistor (MOSFET) [20].

Varying the pulse width or duty cycle in this specific application results in changing the
amount of time that the fan accelerates and therefore controls its speed.

The fans in our prototype are a 4-Pin version that holds two pins for power, one for tachometer
and another one for the PWM signal. This has the convenience that they already have a
built in amplification.

All PWM outputs are implemented using the RaspberryPi’s GPIO pins and as a result we do
not need additional periphery.

The GPIO pins are controlled using the PIGPIO library which is implemented in C and hence
provides low-level, hardware-timed PWMs on all output pins [21].

Developing the fan controls took as a fair amount of time. At the beginning we considered
using Tinkerforge and DC-Bricklets which can produce any voltage in between a certain
range. After assembling eight DC-Bricklets however, we quickly realised that this would not
be an ideal solution due to the many parts needed and the rather big size of the construct.

The next though was to to use the Arduino board, which contains enough outputs to control
all of our electronics. We already did some work with it prior to this thesis. However, we
decided to implemented the hardware control using only the RaspberryPi’s GPIO.

Truly Random, V1.0, 11.06.2015 46

During this development we tried to use the free Pi4J library that is written in Java. It is
based on the WiringPi library that uses software-timed PWMs which are not as precise as
hardware-timed PWM but seemed to nevertheless.

Unfortunately during implementation we discovered that PI4J only enables four PWM signals
which was not enough for our prototype so we had to look out for another solution.

After some research we discovered the now used PIGPIO library. Because of the somewhat
confusing documentation of this library we started to use it through Java Native Access
(JNA), which meant for us to read into JNA and the C compilation and linking process.
We implemented this native access and wrote the corresponding C code. The resulted
implementation worked, but spontaneously crashed because of an unhandled kernel signal 11
in the PIGPIO library, which ”is sent to a process when it makes an invalid virtual memory
reference, or segmentation fault, i.e. when it performs a segmentation violation” [22].

By reading through several forums we figured that other people were dealing with this specific
problem as well and finally discovered the current solution using a daemon and system calls.

After all we learned a lot about JNA and C code compilation which we could put to use in
the server application.

LED control
We added dimmable LEDs to the prototype to enable a perfect adjustment of illumination
inside the tube. With the same principle of PWM LEDs can be modified in brightness.

The LEDs are turned On and Off fast enough so that the human eye perceives it as a constant
source of light. The pulse width or amount of time that the led is On determines how bright
it will appear.

Different to the fans that already contain amplification circuits, we had to develop an elec-
tronic circuit that can power the LEDs without pulling the current from the RaspberryPi.

Truly Random, V1.0, 11.06.2015 47

Figure 18: Schematic diagramm of LEDs

We designed a common collector circuit with a BC517 NPN Darlington transistor for each
LED. This enables us to dim both LEDs independent from each other.

The LEDs L1 and L2 get the power from the RaspberryPi 5V power rail at pin 2, which is
directly connected to the power source. Ground at pin 39 is directly to the emitter of the
transistors Q1 and Q2.

The GPIO pins of the RaspberryPi are connected to the base of the transistors in serial with
the resistor R1 and R2.

If the GPIO pin on the RaspberryPi is high (3.3V) a current flows from the base to the
emitter of the transistor and as a result lets the current flow from the collector to the emitter
which powers on the LED.

This way we can control a bigger amount of current with a small current from the Raspber-
ryPi.

Touch display
The application on the prototype can be controlled using the 7 inch HDMI touch screen
PI-ADA-2396 from Adafruit. It has a resolution of 1024x600 and includes the drivers, touch
controller and buttons to configure the display. It is connected to the RaspberryPi using
a HDMI cable for the signal and powered through a USB cable which connects it to the
RaspberryPi’s 5V rail. The touch controller is connected via USB.

This display works almost out of the box, we only had to configure the resolution.

Truly Random, V1.0, 11.06.2015 48

At first attempt we ordered the 5 inch HDMI backpack touch screen PI-ADA-2260 from
Adafruit but could not get the touch screen to work. Even after configuring, recalibrating,
changing its behaviour from mouse to touch and installing manufacturer calibration software
the coordinates were still wrong and the display not usable as a touch screen.

GPIO pin-out
The following table shows the Broadcom pin numbers of the RaspberryPi GPIO and the
devices connected to it. The fan numbers are the ones printed on the prototype air box.

pin device

4 fan 3
5 fan 6
6 fan 7
13 fan 8
17 fan 4
19 fan 1
21 led 1
22 fan 2
26 led 2
27 fan 5

3.5. Software overview

We wanted our software to be reusable, easily adaptable and extensible. Wherever possible,
we used state-of-the-art software design patterns. For several functions we relied on open
source libraries such as the many useful classes from Apache commons. This has the big
advantage that the code is ample tested and maintained.

The software can be divided into two separate parts, the prototype application and the server
application.

Truly Random, V1.0, 11.06.2015 49

Figure 19: Interaction between applications

The prototype application implements a graphical user interface where the administrator can
control the system and use our application without the need of a network connection.

The server application runs on the target server in command line mode. It does not implement
any graphical interface and can only be accessed through command line inputs. As shown
in 19 Interaction between applications the server application can be started and controlled
through an SSH connection to the host server.

The two applications interact with a serial connection using a USB cable.

Note that the UML diagrams are not complete but rather contain the information that is
necessary to understand the software architecture.

We would like to note a few things in order to understand the software documentation:

We used colors to exemplify the accentuate the different types.

• Blue: Superclasses or classes with abstract methods

• Yellow: Interfaces

• Green: Existing classes from libraries

• White: Regular classes, subclasses or Enums

Truly Random, V1.0, 11.06.2015 50

The software elements contain a unified naming: Controllers and Views from the graphical
user interface are named with ”...Ctrl” and ”...View” Controllers that are not part of the
GUI are named ”...Control”

In the following chapter class names are written as they are in Java and are therefore capi-
talized.

We divided the software into different packages, whereas the most part of the user interface is
inside the truerandom.userinterface package, with the exception of specific implementations
that provide an own view to avoid coupling.

3.6. Prototype Application

The prototype application enables the user to configure, administrate and analyze the gen-
eration of random numbers. Furthermore it provides a safe channel to exchange the inital
secret used for the safe transmission of the random data. It is implemented in a way that
even an inexperienced user can understand and configure the prototype.

The application is written in Java and uses native libraries that are written in C. The following
chapter explains the different parts of the application.

3.6.1. Main

The Main class is the entry point of the application. It is the link for classes that are used by
several different other classes as well as classes that implement a central functionality such
as the transmission.

Figure 20: Main class

Truly Random, V1.0, 11.06.2015 51

It holds instances of the logger, the configuration, the frame, the main control of the graphical
user face, the instances used for transmission, the sound player, the photographer, the
hardware control and the random data control. The Main class provides methods for starting
and stopping the process of entropy collection.

The configuration of the generator can be easily adjusted using the GUI, without having to
use the command line.

3.6.2. Graphical User Interface

The graphical user interface is implemented using the architectural software pattern mode
view controller (MVC). This enforces a unified implementation of the user interface through-
out our software.

Figure 21: MVC UML

The two super-classes View and Controller are extended by the corresponding implementa-
tions.

The Controller class implements the basic functionality and methods like getters and setters
for the view, the model and the title. Furthermore it can hold a logger.

The abstract methods build(), init(), start() and stop() are abstract and have to be imple-
mented by the subclass. The constructor of the Controller calls the methods build() and

Truly Random, V1.0, 11.06.2015 52

init() at instantiation.

The View class extends JPanel so it already is a Java Component and therefore can be
directly added to a layout. In addition, the View already hold an instance of CellConstraint
which we used for creating the layouts. Our Views in the application are mostly designed
using the JGoodies FormLayout which provides an easy way to arrange different components
[12].

More information about the Model-View-Controller pattern can be found online [11].

To unify the appearance of our application we implemented two classes, Cupboard and
GUITools. Cupboard holds reusable things such as sizes, ratios and custom colors.

GUITools provides methods that automatically configure components such as buttons and
sliders. Since our application is made to run on a touch screen, we designed buttons as icons.
To configure a button the only thing necessary is to set its name. GUITools automatically
changes its appearance and loads the image icon from the resource path.

3.6.3. Logging

Our logging implementation is done using Apache’s log4j2 library, whereas the configuration
of the Logger is made in the log4j2.xml file in the resource path. With help of two separate
Appenders for the console and the file output we configured our software to output different
logging levels for the file and the console output.

In short, the console output informs the user about general system actions without going
into too much detail. The log-file contains verbose outputs and more detailed messages to
investigate the behaviour of the software.

The log-files are written in the directory where the jar is executed, with the file-name ”trueran-
dom.log”

3.6.4. Configuration

Since we wanted to make our prototype easily configurable we needed a solid way to store
and retrieve configuration data.

For this reason we created the Configuration class that holds an instance of Apache Com-
mon’s PropertiesConfiguration.

For each configuration, the class holds a key, a default value, a getter and a setter method.
With PropertiesConfiguration it is possible to store every possible type as a property value,

Truly Random, V1.0, 11.06.2015 53

even an object.

When accessing a getter, both the key and the default value is passed as an argument.
If no configuration has been made yet, the default value is automatically written into the
configuration.

Instead of having to provide an initial configuration file for the application to work, default
values can be set and the file will be generated on the fly.

Furthermore this centralises the methods, values and keys of the configuration and makes
the software easier to understand and extend.

3.6.5. System / Hardware Access

The GUI enables the user to configure hardware system states such as the LED brightness
and the individual fan speeds.

Figure 22: Hardware control UML

The class HardwareControl, which is instantiated in the Main class holds two ArrayLists for
the LEDs and the fans which are filled with Integers of the Pin number on the RaspbberPi’s
GPIO port. The pin numbers are the numbers given by the Broadcom chip on the Raspberry.
Publicly, it provides methods to set the fan speeds, led brightness and to turn all the hardware
On or Off whereas it gets the configured values from the Configuration in the Main class.
Privately it uses methods to configure PWM specific things on the GPIO pins such as the
range, the frequency and the duty-cycle.

The actual calls to set the pin behaviour is done using the PIGPIO-daemon called PIGS
which is described in [?]. HardwareControl starts PIGS at instantiation and sets off system
commands for the appropriate commands.

Truly Random, V1.0, 11.06.2015 54

The SystemSettingsCtrl uses a Configuration as its model. SystemSettingsView provides a
user interface to configure fan speeds and led brightnesses using sliders. It automatically
updates the values in its Configuration model and if the hardware is started it updates the
pins as well.

Figure 23: System settings view

3.6.6. Sound output and alarming

In order to give better user feedback in combination with the feedback we implemented the
SoundPlayer class. It provides methods to output several system sounds that are loaded from
the resource path as an AudioInputStream and played as a Clip.

Our prototype contains an alarming function that is set off when it remains in the offline
state for too long. The alarming loop is implemented in the SoundPlayer as well.

3.6.7. Camera

The PiNoir camera can be comfortably accessed using the system commands raspistill and
raspivid. In our case, adjustable camera setting are a vital part of good picture quality.

Truly Random, V1.0, 11.06.2015 55

Figure 24: Camera UML

We implemented the CamControl class that allows to take pictures and videos with every
possible command and options provided for the raspberry camera. This class can be reused
later for a lot of different applications not just in our specific project and therefore comes
in handy. The different modes for exposure, white-balance, image-effects and encodings are
implemented using Enums.

The application demands a class that takes pictures with configured settings in a defined
interval.This is represented by the Photographer class. The Photographer has an instance
of the CamControl and provides methods to take pictures in regular intervals.

The Photographer gets its camera settings from the Configuration file and has a method to
update its settings from the configuration

To make the configuration available to the end user we implemented the CameraSettingsC-
trl and the appendant CameraSettingsView. This view enables configurations of camera
parameters that are automatically stored in the configuration. When camera settings have
changed, the Photographer gets told to update its settings.

Truly Random, V1.0, 11.06.2015 56

Figure 25: Camera settings view

3.6.8. Random Data Control

Instead of directly linking together classes and to avoid coupling we implemented an observer
pattern for random data.

Figure 26: DataControl UML

All random data is fed to the RandomDataControl class. It is responsible to format and
distribute the data.

Truly Random, V1.0, 11.06.2015 57

Classes that are interested in the random data can implement the RandomConsumer interface
and then subscribe for random data in the RandomDataControl class. Accordingly they can
unsubscribe if they no longer wish to receive it.

RandomDataControl also contains a RollingLog, which is a class that we implemented to
maintain a log file that is limited in the number of lines. It only needs a file, the maximum
number of lines and a boolean whether it should write the file after every change or if the
writing is initiated by the owner. If no maximum number is set, it uses a default value of
500 lines. Optionally a Logger can be set so that occurring errors are logged.

This output file of the RollingLog is an important part of the verification process since it is
used to compare the data on the server with the one on the prototype.

3.6.9. Testing tools

As mentioned in 2.6.2 Human perception, a good overview over random data can be obtained
by using methods that involve the human perception.

To make this form of testing available to the user, we implemented a random walk as well
as a mode to analyze the sound output.

Random walk

This is the implementation of the principle explained in 2.6.2 Human perception.

Figure 27: Random walk UML

Analogue to all other views the controller and view extend our abstract MVC classes. The
RandomWalkView provides short instructions and buttons to start, stop and refresh the
random walk.

We implemented the class RandomWalk which extends a JPanel. It holds an inner Enum with

Truly Random, V1.0, 11.06.2015 58

the possible walking directions. RandomWalk implements our RandomConsumer interface
and is subscribed to RandomDataControl as soon as the user touches the play button.
Simultaneously it is unsubscribe when stop is touched.

Each time the RandomWalk receives random data, it interprets the data and chooses a
walking direction based on it. At first we implemented a bitwise interpretation that takes
two bits and chooses the direction based on the value of the two bits (0, 1, 2 or 3). Since
this resulted in a lot of steps for a single image, we implemented another interpretation that
compares the value of a whole byte to determine the direction.

To perform a step, the walk method is called and a WalkDirection is passed as an argument.
The actual Component is a Path2D.Double that is initialized in the center and then draws
a line from the last point to the new location.

Figure 28: Random walk view

Truly Random, V1.0, 11.06.2015 59

Sound analysis

This is the implementation of the principle explained in2.6.2 Human perception.

Figure 29: Sound analysis UML

SoundAnalyzeCtrl holds a RandomRingBuffer, which we implemented using a CircularFi-
foBuffer from Apache Commons.

The RandomRingBuffer implements a RandomConsumer and can therefore easily be sub-
scribed to the RandomDataControl where it gets the random data from. This way it is
automatically refreshed with the latest random data from our prototype.

To stream the binary data and play it on an audio device we created the class AudioOutput.
It provides methods to play a byte array to the audio device as Pule-code modulation (PCM),
which is a method to digitally represent analog signals [18].

Truly Random, V1.0, 11.06.2015 60

Figure 30: Sound analyze view

Quick Response (QR) code

In the earlier stage of development we had the idea of delivering an initial seed in form of a
QR code and therefore implemented a view where the user can get a QR-code with random
numbers.

As it turned out later we embedded this functionality in the transmission setup procedure.
In the TransmissionCtrl the key required for authentication is displayed as text as well as a
QR-code in case that the generator and the server console are too far apart. This way the
user can scan the code, walk to the server console and type in the key.

We decided to keep the initial seed view but re-factored it so it became a neat feature where
the user can get a random number for any purpose.

Truly Random, V1.0, 11.06.2015 61

Figure 31: QR code UML

As already mentioned, the QRCodeView displays a QR-code with random data to the user.
Therefore the QRCodeCtrl implements a RandomConsumer and subscribes itself for random
data.

To generate the actual QR-code image, we made us of the factory design pattern and created
a QRCodeFactory that can be reused for other projects.

The QRCodeFactory makes use of the Zebra Crossing (Zxing) library and the two classes
QRCodeWriter and BitMatrix.

To generate a QR code, the String is encoded into a matrix that contains the bits. When
encoding, an error correction map is needed. This map contains an error correction level
that indicates how much of the destroyed data may be corrected when the QR code is not
fully readable.

After encoding, the resulting BitMatrix holds the information whether or not a specific field
is filled or not.

by iterating through the BitMatrix and filling rectangles, the QR code can be drawn as a
BufferedImage.

More information about the principle or QR codes can be found on the here [19].

Truly Random, V1.0, 11.06.2015 62

Figure 32: Random QR view

The same QRCodefactory is used by the TransmissionSettingsCtrl.

Figure 33: QR code in transmission settings view

Truly Random, V1.0, 11.06.2015 63

3.6.10. Image Processing

The image processing is organized using the strategy pattern [8]. That way, we can easily
switch between different image processing strategies and are not limited by one strategy.
Besides of keeping the application open for further development, this decision was also
based on the fact that we do not possess in depth knowledge of image processing.

Figure 34: Image processing strategy setup

The image processing and the distribution of the resulted values is managed by the class
image processor. To enable multi-threading, the class implements the standard Java Thread
class. Which strategy should be used, can be defined in our configuration file and is mapped
to a corresponding Enumeration class Strategies.

In our prototype application we implemented only one really trivial image processing strategy,
the average grey-scale grid strategy. This strategy simply appends a grid to the given pictures
and measures the average grey-scale value of the different grid fields.

Truly Random, V1.0, 11.06.2015 64

Figure 35: Average grey-scale grid strategy

If the average of a field exceeds a certain threshold we derive a bit of the value 1, if it equals
or undercuts the threshold we derive a bit of the value 0. Whereas the threshold and the
size of the grid are parameters definable in our configuration.

Image Processing Verbose Views
Since humans are are way better in detecting patterns than computers are, it was evident for
us that a visualization of the gathered data would be a great benefit for the testing and the
verification of the random data generation. Therefore we decided to implement a so called
verbose view, which displays the average values gathered by the image processing. Because
future image processing strategies may vary in the way of how they analyze the provided
images, we had to assume that the visualization will differ depending on which strategy is
used. Therefore we extended the strategy pattern with the previously described verbose view.

Figure 36: Image processing strategy setup

Truly Random, V1.0, 11.06.2015 65

Hence every image processing strategy also must provide a verbose view / visualization. To
enable an easier refresh of those views, we also implemented a corresponding verbose model
class (VerboseData) containing the displayed verbose information. Therefore a strategy must
only update the corresponding verbose model to update the data displayed on the view. This
corresponds to the model view controller pattern used on the graphical user interface.

In our implementation, the visualization of the average grey scale grid strategy simply consists
of the average value derived from the different fields. If a average value tends towards the
value 0 or 1, it is obvious that this specific field is not completely unbiased. To underline
this fact, we added a colour transition from green to red, whereas green implies a better
average value (e.g. 0.5) and red implies biased bits (e.g. an average of 0.98). Of course this
depends strongly on the time and the set up of the measurement.

Figure 37: Verbose visualization on the user interface

For example a five minute measurement will not give great hints about how reliable the
random numbers are. But if a system administrators takes a look at this view every time he
passes by the generator, he might discovers that some field are always tending towards 0 or
1. He can therefore easily discover if the generation of the random numbers is flawed and
start further investigations.

Truly Random, V1.0, 11.06.2015 66

3.7. Server Application

The main tasks of the server application is to interact with the incoming transmission. The
server must properly authenticate and receive transmitted data. This includes answering with
an acknowledgement packet for each data packet received. After that the server application
must forward the random data to the corresponding target application.

The two main features of the server application, transmission and seeding, are handled in
the corresponding controller classes. Most classes are based on the generator setup.

The main difference apart from seeding and the transmission behaviour, is that the whole
server application is command line based.

3.7.1. User interface

Since it is highly unlikely that a server possesses a graphical user interface, we decided to
base the server application solely on command line based arguments. The interaction with
the user is supposed to be limited to the authentication during the start up procedure. All
interactions with the user are managed in the class CLIControl.

The reason why we need to have an interaction with the user, is to retrieve the USB device
and to exchange the secret for encryption. Once the transmission as well as the seeding
is running, there is no more need for the user interaction. For now, our application solely
informs the user about the success of the transmission setup and keeps running. For further
versions it might be a good idea to release the InputScanner and run the application as a
background process. This setting however was entirely sufficient to fulfil our requirements,
furthermore using the GNU screen manager the current application could also be started in
a separate session.

3.7.2. Seeding Strategies

Since we wanted to keep our application architecture as open as possible, we implemented the
strategy pattern which we already used for the image processing on the generator. Therefore
every seeding target is implemented as a Seeder class which implements the SeederStrategy
interface.

Truly Random, V1.0, 11.06.2015 67

Figure 38: Setup Strategy Pattern for Seeding

This enables a swift and easy addition of new seeding targets. One can simply add a new
seeder class and add the corresponding identifier to the configuration as well as to the switch
statement in the class SeedControl. In the future the switch statement could be replaced by
a corresponding enumeration class as we have done it on the generator application.

Seeding /dev/random
As we previously introduced, one of the main functionalities of our server application is
seeding into /dev/random. The underlying construct of /dev/random, the Fortuna PRNG
has already been discussed in detail in the conception. To seed the /dev/random construct,
there is a predefined IOCTL call (RNDADDENTROPY):

struct rand_pool_info {

int entropy_count;

int buf_size;

__u32 buf[0];

};

Since this a kernel level system call, we were not able to access it directly with our java
application We had to write a corresponding small C instruction, which will get called by our
java program using the Java Native Interface (JNI).

Seeding To File

Truly Random, V1.0, 11.06.2015 68

To enable easier testing and to show that our generator could also be used to provide entropy
for other services, we also implemented a Seed to File strategy.

It is a quite trivial approach which is based on the Java standard class FileOutputStream. To
avoid overflows and enable long term tests, we created a manual rolling feature by counting
the lines and creating a new output file once the predefined maximal length is reached.

The parameters such as the file location and max length of a output file are defined in the
configuration /properties file).

3.8. Data Transmission

According to the definition of the transmission concept, we decided to describe the trans-
mission using the states DOWN, AUTHORIZATION, UP and OFFLINE. For a more detailed
description on what actions are taken during the different states, see appendix: A Transmis-
sion Flow.

Figure 39: Transmission states

The main functionality of the software is to react to To make our transmission implementation
as flexible as possible, we included key values such as response times in our configuration
file. Hence the transmission rate can be adjusted according the demands of the generator
(e.g. if the generator is able to provide more entropy due to a better configuration).

Truly Random, V1.0, 11.06.2015 69

3.8.1. Hardware Implementation

At the start of the project, we ordered a simple peer to peer USB cable to connect the
Raspberry Pi to the server. The declarations of most USB cables were not that detailed
and we did not encounter a lot of corresponding setups during our research. It turned out
that the cable was not crossed, which it should have been to enable a peer to peer USB
connection. Luckily we were able to obtain a corresponding crossed USB cable from our
electronics division.

We directly attached the USB pins to the Raspberry Pi GPIO pins and connected the other
side of the cable to the server.

(a) Modified USB cable
(b) Pins connected to Raspberry Pi GPIO

Figure 40: Setup of the USB cable

The device was immediately detected by the Raspbian operating system via the Advanced
Micro-controller Bus Architecture (AMBA) and displayed as device ttyAMA0. Once con-
nected to the server, we were able to exchange data using simple shell commands. This
enabled us to go a step further and implement a corresponding application in Java.

3.8.2. Software Implementation

First we tried to set up the transmission using a quite primitive approach. We simply executed
the echo command to write to the corresponding Unix devices (ttyAMA0, ttyUSB*) and used
a BufferedReader to read from the devices. We observed that during the read process, the
machine on the other end was constantly receiving blank lines as an input. This then led to
a deadlock, since sometimes both sides are supposed to listening / read from the device.

We therefore decided to look for a cleaner solution to manage the transmission. Since the
few Java based solutions we stumbled upon (e.g. usb4java[9]) were too complex and not
fully applicable to our situation, we decided to build a trivial serial connection. We chose the
rxtx library [10] to do so, because we have been using it in a previous project and it turned

Truly Random, V1.0, 11.06.2015 70

out to be simple and robust.

All classes that are used for the transmission are located in the package truerandom.transmission,
respectively truerandomserver.transmission. The main features are represented by the Trans-
missionControl class, which is taking actions accordingly to the current state of the trans-
mission. For more information on the exact transmission flow, please consider appendix A
Transmission Flow.

Figure 41: Setup Transmission

To describe the different states, we created a corresponding enumeration class Transmission-
State. The actions concerning the set up of the serial connection as well as sending and
receiving of the transmitted data are represented by the USBControl class. Lastly, there is
the CryptoToolbox which provides cryptographic functions such as SHA512 hashing and AES
encryption. The CryptoToolbox currently handles all exceptions directly. In a future version
these should be passed on to the upper classes, which would make it possible to include the
CryptoToolbox in a commons library.

On the generator, we still use a so called TransmissionBuffer class and a BitBufferQueue
class. Theses classes originated during the beginning of the project, before we applied the
data control system (see section 3.6.8 Random Data Control).

Truly Random, V1.0, 11.06.2015 71

It is to say, that apart from the TransmissionControl all transmission related classes include
almost the same features on both server an generator, hence they have both been described
in this section.

3.9. Test Procedure (Challenge Response)

We added a corresponding opening to our prototype to make sure that the insertion of a
test module is physically possible.

Figure 42: Insertion of a test module

As we can see in the figure, the test module neatly covers the motive of the camera and
therefore static output has to be expected on both the generator and the server. Once
inserted, we have various possibilities to verify the random numbers generated during the
test procedure.

Truly Random, V1.0, 11.06.2015 72

The most trivial attempt would be to analyse the output of the RollingBuffer. By comparing
the raw random bits on both server and generator with the expected test values, the whole
generation process can be verified. Although this is the safest way, it is not really user-friendly
since every bit has to be compared manually. For future version one might try to create a
corresponding log parser, who automatically compares the log files of server and generator
for a more accurate comparison.

As we described in our concept (see section 2.6 Testing randomness), humans are way better
in detecting patterns than computers are. With our additional features, one can us a more
pleasant way to verify the current output. For example by taking a look at the verbose view.

(a) Verbose view during test (b) Verbose view normal runtime

Figure 43: Using the Verbose view for the testing procedure

It is to say that the verbose view is not always a good option, since if the generator has
been running for some time it takes extremely long to see the changes happening on the
visualization. Another way would be to play the random bits via speaker using our sound
buffer feature or by taking a look at the random walk feature. During our tests however, the
verbose view turned out to be the most intuitive way to get information about the currently
produced random numbers.

Truly Random, V1.0, 11.06.2015 73

Truly Random, Version 1.0, 11.06.2015
74

4. Conclusion

4.1. Progress and Time Management

Until we started with the development phase, we were able to keep to our project schedule and achieve the milestones defined during the planning
phase of our thesis. But once we started with the implementation we quickly realized that we had to restructure our project planning.

Figure 44: Actual project schedule

The main reason was that we encountered a lot of issues that required more attention and
provided us with a lot more questions than we expected. For one thing, the physical prototype
included a lot more planning, clarifications. Especially the 3D prints caused a big delay and
urged us to rethink the real goal of our generator prototype.

The main reason for this delay was because we realized that we are going to create a prototype
that is fixated on one specific random phenomenon. We then decided to lay a bigger focus
on the prototype and the application in order to build it a open, more general applicable
way. Thus if our specific phenomenon turns out to be either incapable of providing enough
entropy or if we fail due to mechanical aspects, our concept and software could be applied
to any other random phenomena that is detectable by a camera.

4.2. Open Issues

As our project went on, we steadily discovered parts of our software that could be improved
as well as possible new features or unfavorable implementations. To make sure that these
open issues are not lost track of in the future development, we decided to point them out in
this chapter.

Safe shutdown of the server application
The server application should be implemented as a background process to enable a better
handling. This includes the ability for a user to safely shutdown the service at any time.

Verbose view reset button
Currently the reset action is called when the lower part of the verbose view is clicked, rather
than just if the button is clicked. This is a rather specific detail that can be resolved easily.

Adjustment of the random walk system
Currently the orientation of the random walk is based on an int value in between 127 and -127.
Hence the value of one byte. This proved to be a problem since higher bits are influencing
the outcome a lot stronger than the smaller bits are. In a future version we would create a
new concept that combines the two implementations of bit-wise and byte-wise interpretation.

JUnit tests in further development
During our development phase we did not use JUnit test classes for in depth testing. Although
we did not face any problems due to that, we suggest to include JUnit testing into further
development processes. This is mainly due to the fact that the application steadily grows
and deploying the application to the prototype might become time consuming.

Refactoring of TranmissionBuffer / BitBufferQueue
Due to the DataControl concept, the classes TransmissionBuffer and BitBufferQueue on
the generator application could be shrinked to one instance, maybe even included in the
TransmissionController.

Truly Random, V1.0, 11.06.2015 75

4.3. Prospect

Even though we initially focused on a specific phenomenon, we recognized that we needed
to stop focusing on a single approach and developed a powerful platform for randomness
extraction and testing. During our thesis we built a solid prototype that is open for a
lot of options and an ideal platform to continue the development of true random number
generators.

We sincerely hope that our prototype will be developed further and that its abilities to adapt
to many other phenomena will be recognized and put to use. During the last semester we
learned a great deal not just in computer science but interdisciplinary in engineering, what
makes us look back to a very successful and interesting bachelor’s thesis.

Truly Random, V1.0, 11.06.2015 76

Declaration of primary authorship

I / We hereby confirm that I / we have written this thesis independently and without using
other sources and resources than those specified in the bibliography. All text passages which
were not written by me are marked as quotations and provided with the exact indication of
its origin.

Place, Date: Biel, June 11, 2015

Last Name/s, First Name/s: Morandi Matteo Rothen Tobias

Signature/s:

Truly Random, V1.0, 11.06.2015 77

References

[1] Bruce Schneier, ”The Strange Story of DUAL EC DRBG” 2007 [Online], Available:
https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html

[2] Tom McNichol, ”Totally Random” 2003, Wired, [Online], Available: http://archive.
wired.com/wired/archive/11.08/random.html

[3] Ian Goldberg and David Wagner, ”Randomness and the Netscape Browser” 1996,
CS Berkley [Online], Available: http://www.cs.berkeley.edu/~daw/papers/

ddj-netscape.html

[4] Module Computer Science Seminar, Bern University of Applied Science, http://www.
ti.bfh.ch/fileadmin/modules/BTI7302-de.xml

[5] Module Project 2, Bern University of Applied Science, http://www.ti.bfh.ch/

fileadmin/modules/BTI7302-de.xml

[6] Glenn Greenwald, ”How the NSA tampers with US made internet routers” 2014, The
Guardian, [Online], Available: http://www.theguardian.com/books/2014/may/12/

glenn-greenwald-nsa-tampers-us-internet-routers-snowden

[7] Cryptographic Key Recommendation, Blue Crypt, [Online], Available: http://www.

keylength.com/

[8] Strategy Design Patter, sourcemaking.com, [Online], Available: https://

sourcemaking.com/design_patterns/strategy

[9] usb4java, a Java library based on libusb 1.0, [Online], http://usb4java.org/

[10] RXTX,native interface to serial ports in Java, [Online], https://github.com/rxtx/
rxtx

[11] Model view controller Wikipedia, [Online], http://en.wikipedia.org/wiki/Model_
view_controller

[12] JGoodies FormLayout, [Online], http://www.jgoodies.com/freeware/libraries/
forms/

[13] Statistical Randomness, [Online], http://en.wikipedia.org/wiki/Statistical_

randomness

[14] Random walk with 25000 steps, [Online], http://upload.wikimedia.org/

wikipedia/commons/e/ea/Random_walk_25000_not_animated.svg

Truly Random, V1.0, 11.06.2015 78

https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html
http://archive.wired.com/wired/archive/11.08/random.html
http://archive.wired.com/wired/archive/11.08/random.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.ti.bfh.ch/fileadmin/modules/BTI7302-de.xml
http://www.ti.bfh.ch/fileadmin/modules/BTI7302-de.xml
http://www.ti.bfh.ch/fileadmin/modules/BTI7302-de.xml
http://www.ti.bfh.ch/fileadmin/modules/BTI7302-de.xml
http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden
http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden
http://www.keylength.com/
http://www.keylength.com/
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
http://usb4java.org/
https://github.com/rxtx/rxtx
https://github.com/rxtx/rxtx
http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/wiki/Model_view_controller
http://www.jgoodies.com/freeware/libraries/forms/
http://www.jgoodies.com/freeware/libraries/forms/
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Statistical_randomness
http://upload.wikimedia.org/wikipedia/commons/e/ea/Random_walk_25000_not_animated.svg
http://upload.wikimedia.org/wikipedia/commons/e/ea/Random_walk_25000_not_animated.svg

[15] Random walk square root of two, [Online], http://www.jeffreythompson.org/

blog/2012/01/04/random-walk-square-root-of-two/

[16] Hash Visualization: a New Technique to improve Real-World Security, [Online], http:
//users.ece.cmu.edu/~adrian/projects/validation/validation.pdf

[17] Pseudo-random vs. True random, [Online], http://boallen.com/random-numbers.
html

[18] Pulse-code modulation, [Online], https://en.wikipedia.org/wiki/Pulse-code_

modulation

[19] QR code API, [Online], http://goqr.me/api/doc/create-qr-code/

[20] MOSFET Wikipedia, [Online], http://en.wikipedia.org/wiki/MOSFET

[21] PIGPIO library, [Online], http://abyz.co.uk/rpi/pigpio/

[22] Unix Signals Wikipedia, [Online], http://en.wikipedia.org/wiki/Unix_signal

[23] Tinkercad [Online], www.tinkercad.com

Content of all web pages dated June 11, 2015

Truly Random, V1.0, 11.06.2015 79

http://www.jeffreythompson.org/blog/2012/01/04/random-walk-square-root-of-two/
http://www.jeffreythompson.org/blog/2012/01/04/random-walk-square-root-of-two/
http://users.ece.cmu.edu/~adrian/projects/validation/validation.pdf
http://users.ece.cmu.edu/~adrian/projects/validation/validation.pdf
http://boallen.com/random-numbers.html
http://boallen.com/random-numbers.html
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Pulse-code_modulation
http://goqr.me/api/doc/create-qr-code/
http://en.wikipedia.org/wiki/MOSFET
http://abyz.co.uk/rpi/pigpio/
http://en.wikipedia.org/wiki/Unix_signal
www.tinkercad.com

A. Transmission Flow

A.1. Server Startup

Figure 45: Network Flow Server Startup

Truly Random, V1.0, 11.06.2015 80

A.2. Server Data Transport

Figure 46: Network Flow Server Data Transport

Truly Random, V1.0, 11.06.2015 81

A.3. Generator Startup

Figure 47: Network Flow Generator Startup

Truly Random, V1.0, 11.06.2015 82

A.4. Generator Data Transport

Figure 48: Network Flow Generator Data Transport

Truly Random, V1.0, 11.06.2015 83

B. Installation Manuals

B.1. (Installation Generator(Raspberry Pi)

B.1.1. Setup

The application on the server is possessing the following folder structure:

/*.jar executable application
/picturepool/ contains the pictures taken by the data
/conf/ contains the properties file for configuration
/out/ contains the dumps of the produced random numbers
/truerandom.log log file for verbose output

Although the folders are supposed to be created once the application starts, this should give
an oversight on how the applications looks like in a vital state.

B.1.2. Prerequisites

1. Raspbian
Download and install Raspbian on a RaspberryPi 2 as instructed on:
https://www.raspberrypi.org/downloads/

2. Java JDK8
Java will most likely already be installed in the latest Raspbian image. However, you may
need to configure the Java version in order to run the software. Set the java and javac to
version 8:

sudo update-alternatives --config java

sudo update-alternatives --config javac

The application has only been tested with Oracle JDK 8, hence running the application with
other java versions is not supported.

3. Git and Maven (for developers)
Git is used to pull the source code from the repository and Maven to build and package the
software. Alltough our software comes in a Jar, you may need this to pull and build future
updates.

sudo apt-get install git maven

Truly Random, V1.0, 11.06.2015 84

https://www.raspberrypi.org/downloads/

4. Java Native Interface
JNI is used for calls to native libraries

sudo apt-get install libjna-java

4. RXTX
This library is used for serial communication between the generator and the server.

sudo apt-get install librxtx-java

5. Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
Installation needed to enable strong cryptography (256 bit keys in AES encryption). Copy
and overwrite the two files local policy.jar and US export policy.jar.

sudo cp US_export_policy.jar $JAVA_HOME/jre/lib/security/US_export_policy.jar

sudo cp policy.jar $JAVA_HOME/jre/lib/security/policy.jar

6. PIGPIO Library
This library is needed to control the fans and LEDs using the GPIO pins of the RaspberryPi.

wget abyz.co.uk/rpi/pigpio/pigpio.zip

unzip pigpio.zip

cd PIGPIO

make

make install

7. RaspberryPi / Display / Camera
Raspbian needs some changes to its configuration for the touchscreen display, the camera
and overall performance:

Add the following lines to /boot/config.txt:

hdmi_force_hotplug=1

hdmi_group=2

hdmi_mode=1

hdmi_mode=87

hdmi_cvt 1024 600 60 6 0 0 0

max_usb_current=1

disable_camera_led=1

Furthermore start raspi-config and make the following changes:

sudo raspi-config

->Enable Camera -> Enable

Truly Random, V1.0, 11.06.2015 85

-> Overclock -> Modest

->Advanced Options -> Serial -> No

B.1.3. Starting the Application

Use the startup.sh script to start the application:

source start.sh

NOTE: The application has to be started with root privileges!

Truly Random, V1.0, 11.06.2015 86

B.2. Installation (Server)

B.2.1. Setup

The application on the server is possessing the following folder structure:

/*.jar executable application
/picturepool/ contains the pictures taken by the data
/conf/ contains the properties file for configuration
/out/ contains the dumps of the produced random numbers
/truerandom.log logfile for verbose output

Although the folders are supposed to be created once the application starts, this should give
an oversight on how the applications looks like in a vital state.

B.2.2. Prerequisites

1. Java JDK8
Java will most likely already be installed on the Ubuntu server. The version can be checked
using java -version. If not already installed, install the newest version of java and make sure
it is configured as standard:

sudo update-alternatives --config java

sudo update-alternatives --config javac

The application has only been tested with oracle JDK 8, hence running the application with
other java versions is not supported.

2. RXTX
This library is used for serial communication between the generator and the server. Install it
with the command:

sudo apt-get install librxtx-java

3. Java Cryptography Extension(JCE) Unlimited Strength Jurisdiction Policy
Installation needed to enable strong cryptography (256 bit keys in AES encryption). Copy
and overwrite the two files local policy.jar and US export policy.jar.

sudo cp US_export_policy.jar $JAVA_HOME/jre/lib/security/US_export_policy.jar

sudo cp policy.jar $JAVA_HOME/jre/lib/security/policy.jar

Truly Random, V1.0, 11.06.2015 87

B.2.3. Starting the Application

Use the startup.sh script to start the application:

source start.sh

NOTE: The application has to be started with root privileges!

B.2.4. Application Recovery

The Application will create a so called hook-file when terminated unplanned. This enables
the server to maintain the serial connection with the generator after a unplanned reboot. If
you want to start the application normally and re-authenticate the generator, use the cleanup
script prior to start up:

source cleanup.sh

source start.sh

Truly Random, V1.0, 11.06.2015 88

	Introduction
	Definition of the Project
	Fundamental Concepts of Random Number Generation
	The Entropy Source Issue
	Current State of the Art
	Comprehensibility and Verifiability of Random Number Generators

	Conception
	Our Approach
	Preliminary Work

	Generator Concept
	Use Cases

	Server Concept
	Use Cases
	The Fortuna PRNG

	Transmission Concept
	Initialization and Authorization
	Transport of Random Data
	Timeout and Offline Mode

	Risk Assessment
	Generator Security
	Transmission Security
	Server Security
	Trust Assumptions

	Testing randomness
	Statistical randomness tests
	Human perception

	Requirements
	Goals
	Project Schedule
	Milestones
	Phase Planning
	Phase Implementation
	Phase Testing
	Phase Conclusion

	Implementation
	Main Concept
	Development Environment
	Prototype structure
	Electronics
	Software overview
	Prototype Application
	Main
	Graphical User Interface
	Logging
	Configuration
	System / Hardware Access
	Sound output and alarming
	Camera
	Random Data Control
	Testing tools
	Image Processing

	Server Application
	User interface
	Seeding Strategies

	Data Transmission
	Hardware Implementation
	Software Implementation

	Test Procedure (Challenge Response)

	Conclusion
	Progress and Time Management
	Open Issues
	Prospect

	Transmission Flow
	Server Startup
	Server Data Transport
	Generator Startup
	Generator Data Transport

	Installation Manuals
	(Installation Generator(Raspberry Pi)
	Setup
	Prerequisites
	Starting the Application

	Installation (Server)
	Setup
	Prerequisites
	Starting the Application
	Application Recovery

