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Vote Privacy Assumptions

“Any adversary is polynomial-time bounded.”

“A threshold number of authorities is trustworthy.”
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Protocol Overview

Goal: Make vote privacy independent of

computational intractability assumptions
trusted authorities

Involved parties

election administration
voters
public bulletin board
verifiers (the public)

Cryptographic ingredients: perfectly hiding commitments,
non-interactive zero-knowledge proofs (NIZKP)
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Step 1: Registration

The voter . . .

creates a pair of private and public credentials

sends the public credential to the election administration (over
an authentic channel)
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Step 2: Election Preparation

The election administration . . .

publishes the list of public voter credentials on bulletin board
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Step 3: Vote Casting

The voter . . .

creates ballot consisting of

commitment to public credential
NIZKP that the commitment contains a valid public credential
NIZKP of knowing the corresponding private credential
vote

sends ballot to bulletin board (over an anonymous channel)
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Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

checks proofs contained in each ballot

computes the election result
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Cryptographic Setup

Let Gp be a cyclic group of prime order p with independent
generators g0, g1

Let Gq ⊂ Z∗p be a sub-group of prime order q | (p − 1) with
independent generators h0, h1, . . . , hN

Assume that DL has no efficient solution in Gp and Gq
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Pedersen Commitments

Pedersen commitment over Gp, for u, r ∈ Zp

comp(u, r) = g r
0g

u
1

Pedersen commitment over Gq, for v , s ∈ Zq

comq(v , s) = hs0h
v
1

comq(v1, . . . , vN , s) = hs0h
v1
1 · · · hvNN

Perfectly hiding, computationally binding, homomorphic
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Non-Interactive Preimage Proofs

Goal: prove knowledge of preimage of a given value

NIZKP[(a) : b = φ(a)]

Secret input

a ∈ X

Public inputs

Homomorphic one-way function φ : X → Y
b = φ(a) ∈ Y

Standard construction

Σ-protocol
Fiat-Shamir heuristic using hash function
Proof transcript: π = (t, s) ∈ Y × X
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Examples of Preimage Proofs

Knowledge of discrete logarithm (Schnorr)

NIZKP[(a) : b = ga]

Equality of discrete logarithms (Chaum-Pedersen)

NIZKP[(a) : b1 = ga
1 ∧ b2 = ga

2 ]

Ability of opening a Pedersen commitment

NIZKP[(u, r) : c = comp(u, r)]

Knowledge of ElGamal plaintext

NIZKP[(m, r) : e = ElGamalpk(m, r)]
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Set Membership Proof
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Set Membership Proof

Goal: prove that a committed value belongs to a given set

NIZKP[(u, r) : c = comp(u, r) ∧ u ∈ U]

Secret inputs

u, r ∈ Zp

Public inputs

Commitment c = comp(u, r) ∈ Gp
Set U = {u1, . . . , uM} of values ui ∈ Zp
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General Construction

Proposed by Brands et al. (2007)

Let P(X ) =
∏M

i=1(X − ui ) satisfying P(ui ) = 0 for all ui ∈ U

Set membership proof

NIZKP[(u, r) : c = comp(u, r) ∧ u ∈ U]

⇐⇒
NIZKP[(u, r) : c = comp(u, r) ∧ P(u) = 0]
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Polynomial Evaluation Proof

Polynomial evaluation proof by Bayer and Groth (2013)

NIZKP[(u, r , v , s) : c = comp(u, r)∧d = comp(v , s)∧P(u) = v ]

Performance (for v = s = 0)

Transcript: 4 logM elements of Gp, 3 logM elements of Zp

Generation: O(M logM)
8 logM exponentiations in Gp, 2M logM multiplications in Zp

Verification: O(M)
6 logM exponentiations in Gp, 3M multiplications in Zp
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Public Input: c = comp(u, r) 2 Gp, P (X) =
PM

i=0 aiX
i 2 Zp[X]

Secret Input: u, r 2 Zp

Generation:
1. For j = 1, ... , m, pick rj 2R Zp and compute cj = comp(u2j

, rj).
2. For j = 0, ... , m, pick āj , r̄j 2R Zp and compute c̄j = comp(āj , r̄j).
3. Compute new polynomial

P̃ (X) =

mX

j=0

ãjX
j =

MX

i=0

ai

mY

j=0

(u2j

X + āj)
i[j]X1�i[j] 2 Zp[X]

of degree m. For j = 0, ... , m, pick r̃j 2R Zp and compute c̃j =
comp(ãj , r̃j).

4. For j = 0, ... , m � 1, compute âj = u2j

āj , pick r̂j 2R Zp, and compute
ĉj = comp(âj , r̂j).

5. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm�1).

6. For j = 0, ... , m, compute ā0
j = āj + xu2j

.
7. For j = 0, ... , m, compute r̄0j = r̄j + xrj .
8. For j = 0, ... , m � 1, compute r̂0j = r̂j + xrj+1 � bjrj .
9. Compute r̃0 =

Pm
j=0 r̃jx

j .
Transcript:

(c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm�1, ā
0
0, ... , ā

0
m, r̄00, ... , r̄

0
m, r̂00, ... , r̂

0
m�1, r̃

0)
Verification:

1. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm�1).
2. For j = 0, ... , m, check cx

j c̄j = comp(ā0
j , r̄

0
j).

3. For j = 0, ... , m � 1, check cx
j+1ĉj = c

ā0
j

j · comp(0, r̂0j).
4. Check

mY

j=0

c̃ xj

j = comp

 
MX

i=0

ai

mY

j=0

ā0
j
i[j]x1�i[j], r̃0

!
.

Fig. 1: Non-interactive version of the polynomial evaluation proof NIZKP [(u, r) : c =
comp(u, r) ^ P (u) = 0] according to Bayer and Groth [3], using a slightly adjusted
formal notation. We use m = blog Mc = |M | � 1 to denote the bit length of M minus 1
and a publicly known hash function h(·) with values in Zp to compute the challenge
x. The j-th bit of the binary representation of an index i 2 {0, ... , M} is denoted by
i[j] 2 {0, 1}, for j = {0, ... , m}. For reasons of convenience, let c0 = c and r0 = r.

assumptions. In Sections 3.2 and 3.3, which constitutes the main contribution of
this paper, we provide a detailed formal description of the protocol and analyse
its security properties. A compact summary of the protocol is given in Figure 3.
We round o↵ this section with a discussion of some important side aspects and
corresponding protocol extensions.
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Representation Proof
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DL-Representation

Let Gq ⊂ Z∗p be a cyclic group of order q and h1, . . . , hN ∈ Gq

A tuple (v1, . . . , vN) ∈ ZN
q is a DL-representation of u ∈ Gq

relative to h1, . . . , hN , if

u = hv1
1 · · · hvNN

Note that Gq ⊂ Z∗p ⊂ Zp implies u ∈ Zp
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Representation Proof

Goal: prove that a commitment contains a DL-representation
of another committed value

NIZKP[(u, r ,v1, . . . , vN , s) : c = comp(u, r)∧
d = comq(v1, . . . , vN , s) ∧ u = hv1

1 · · · hvNN ]

Secret inputs

u, r ∈ Zp

v1, . . . , vN , s ∈ Zq

Public inputs

Commitment c = comp(u, r) ∈ Gp
Commitment d = comq(v1, . . . , vN , s) ∈ Gq
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Representation Proof

Au, Susilo, Mu (2010) proposed an extension of the double
discrete logarithm proof by Camenisch and Stadler (1997)

Let K be a security parameter (e.g. K = 80)

Performance

Transcript: K elements of Gp, Gq, Zp, KN elements of Zq

Generation and verification: O(KN)
2K exponentiations in Gp, KN exponentiations in Gq

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 22



Public Input: c = comp(u, r) 2 Gp, d = comq(v1, ... , vN , s) 2 Gq

Secret Input: u, r 2 Zp, v1, ... , vN , s 2 Zq

Generation:
1. Pick ū, r̄ 2R Zp and compute c̄ = comp(ū, r̄).
2. For j = 1, ... , K,

(a) pick v̄1,j , ... , v̄N,j 2R Zq and compute ūj = h
v̄1,j

1 · · · hv̄N,j

N ,
(b) pick r̄j 2R Zp and compute c̄j = comp(ūj , r̄j),
(c) pick s̄j 2R Zq and compute d̄j = comq(v̄1,j , ... , v̄N,j , s̄j).

3. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
4. Compute ū0 = ū � xu and r̄0 = r̄ � xr.
5. For j = 1, ... , K,

(a) for i = 1, ... , N , compute v̄0
i,j = v̄i,j � x[j]vi,

(b) compute r̄0j = r̄j � x[j] · comq(v̄
0
1,j , ... , v̄

0
N,j , r),

(c) compute s̄0j = s̄j � x[j]s.
Transcript:

(c̄, c̄1, ... , c̄k, d̄1, ... , d̄k, ū0, r̄0, v̄0
1,1, ... , v̄

0
N,K , r̄01, ... , r̄

0
k, s̄01, ... , s̄

0
k)

Verification:
1. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
2. Check c̄ = cx · comp(ū0, r̄0).
3. For j = 1, ... , K,

(a) check d̄j = dx[j] · comq(v̄
0
1,j , ... , v̄

0
N,j , s̄

0
j),

(b) compute ū0
j = h

v̄0
1,j

1 · · · hv̄0
N,j

N , and check

c̄j =

(
comp(ū0

j , r̄
0
j), if x[j] = 0,

cū0
j · comp(0, r̄0j), if x[j] = 1.

Fig. 2: Non-interactive version of the representation proof NIZKP [(u, r, v1 ... , vN , s) :
c = comp(u, r) ^ d = comq(v1, ... , vN , s) ^ u = hv1

1 · · · hvN
N ] according to Au et al. [2],

using a slightly adjusted formal notation. We use a publicly known hash function h(·)
with values in Zp to compute the challenge x. The j-th bit of the binary representation
of x is denoted by x[j] 2 {0, 1} and K < log p is the security parameter.

3.1 Adversary Model and Trust Assumptions

We consider two types of adversaries with di↵erent capabilities and goals. An
adversary of the first type acts at the present time, before or while an election
takes place, whereas an adversary of the second type acts at any point in the
future. Accordingly, we call them present adversaries and future adversaries.

The goal of present adversaries is to break the integrity or secrecy of the votes
during an election, for example by submitting votes in the name of someone else
or by linking votes to voters. We assume present adversaries to be polynomially
bounded and thus incapable of solving mathematical problems such as computing
discrete logarithms in large prime order groups or breaking cryptographic primi-
tives such as contemporary hash functions. This implies that present adversaries
cannot e�ciently find valid openings of Pedersen commitments or valid proof
transcripts for zero-knowledge proofs of knowledge without knowing the secret
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Step 1: Registration

The voter . . .

creates a pair of private and public credentials

sends the public credential to the election administration (over
an authentic channel)
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Step 1: Registration

The voter . . .

creates a pair of private and public credentials

α, β ∈R Zq

u = hα1 h
β
2 ∈ Gq

sends the public credential u to the election administration
(over an authentic channel)
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Step 2: Election Preparation

The election administration . . .

publishes the list of public voter credentials on bulletin board
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Step 2: Election Preparation

The election administration . . .

defines the list of public voter credentials U = {u1, . . . , uM}
computes coefficients a0, . . . , aM of polynomial

P(X ) =
M∏
i=1

(X − ui ) =
M∑
i=0

aiX
i

selects independent election generator ĥ ∈ Gq

publishes (U, a0, . . . , aM , ĥ) on bulletin board
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Step 3: Vote Casting

The voter . . .

creates ballot consisting of

commitment the public credential
NIZKP that the commitment contains a valid public credential
NIZKP of knowing the corresponding private credential
vote

sends ballot to bulletin board (over an anonymous channel)
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Step 3: Vote Casting

The voter . . .

creates ballot B = (c , d , e, û, π1, π2, π3) consisting of

commitment to public credential c = comp(u, r)

π1 = NIZKP[(u, r) : c = comp(u, r) ∧ P(u) = 0]

commitment to private credential d = comq(α, β, s)

π2 = NIZKP[(u, r , α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s) ∧ u = hα1 h
β
2 ]

vote e
election credential û = ĥβ

π3 = NIZKP[(α, β, s) : d = comq(α, β, s) ∧ û = ĥβ]

sends ballot B to bulletin board (over an anonymous channel)
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Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

checks proofs contained in each ballot

computes the election result
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Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

U, a0, . . . , aM , ĥ,B

checks proofs π1, π2, π3 contained in each ballot B ∈ B
detects ballots with identical values û and resolve conflicts

computes the election result from votes v contained in B′ ⊆ B
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Adversary Model

Present adversaries are polynomial-time bounded and thus . . .

unable to solve DL efficiently in Gp and Gq

unable to compute hash−1(h)

Future adversaries will have unrestricted computational
resources and are therefore

able to solve DL efficiently in Gp and Gq

able to compute hash−1(h)
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Correctness

Attack by present adversary (during or shortly after election)

Case 1: Present adversary 6= voter

Find representation (α′, β′) for some u ∈ U
→ equivalent to solving DL
Simulate π1, π2, π3 without valid secret inputs (α′, β′)
→ equivalent to solving DL or inverting hash function

Case 2: Present adversary = voter

Use different β′ 6= β in a second ballot and simulate π3

→ equivalent to solving DL or inverting hash function
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Privacy

Attack by future adversary (possibly in the far future)

For every B = (c , d , e, û, π1, π2, π3) ∈ B
compute β satisfying û = ĥβ

compute (α′, β) satisfying u′ = hα
′

1 hβ2 for every u′ ∈ U

Therefore, uncovering β from every ballot does not reveal
anything about the links between B and U

Note that c , d are perfectly hiding and π1, π2, π3 are perfect
zero-knowledge
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Extensions

To achieve fairness, the vote must be encrypted

Generate encryption key pair (sk , pk) during election
preparation
Encrypt vote using pk during vote casting
Publish sk to initiate public tallying

Extended credentials are required to vote multiple times

Private credentials (α, β1, . . . , βL)

Public credentials u = hα1 h
β1

2 · · · hβL

L+1

Use different βi for each election

To allow vote updating, some other minor adjustments are
necessary
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Ballot Size

included in the final tally. If vote updating is a requirement, then we must ensure
that nobody can cast a ballot in the name of someone else by just copying the
proofs. This can be prevented, either by cancelling out ballots with proofs that
are bit-equal to proofs already published on the bulletin board, or by making the
challenges used in the proofs dependent on e.

4 Performance and Implementation

Given the complexity of both the set membership proof and the representation
proof, we need to look closely at the computational resources required by our
voting protocol. As we will see in this section, the performance is the most
critical aspect of our protocol compared to others. We will first analyse the ballot
size and estimate the total amount of election data that results from di↵erent
electorate sizes. Then we discuss the cost of computation for creating a ballot
and for verifying the entire election at the end of the election period.

4.1 Ballot Size

The size of a ballot in our protocol is mainly determined by the sizes of ⇡1 and
⇡2. In Section 2, we have given respective numbers. Recall that ⇡1 depends on M
only, whereas ⇡2 depends on K and L. In Table 1, we recapitulate the number
of group elements for Gp, Zp, Gq, and Zq and sum them up. Since Zp and Gq

share the same modulo p, their elements are counted together. The table does not
include corresponding numbers for the vote e and the proof of known plaintext
in case of an encrypted vote.

Ballot Component Elements of Gp Elements of Zp, Gq Elements of Zq

c, d, û 1 2 –
⇡1 4blog Mc + 2 3blog Mc + 3 –
⇡2 K + 1 2K + 2 K(L + 2)
⇡3 – 2 4

Entire Ballot 4blog Mc + K + 4 3blog Mc + 2K + 9 KL + 2K + 4

Table 1: Ballot size as a function of M , K, and L (without encrypted vote and proof of
known plaintext of the encrypted vote). Elements of Zp and Gq are counted together.

To calculate the actual size of a ballot and estimate the total size of the
election data, some of the system parameters need to be fixed. We consider
the basic protocol version for a single election by setting L = 1. For a security
parameter K = 80, we choose corresponding bit lengths |q| = 160 and |p| = 1024.
In the light of today’s recommendations for cryptographic parameters, these
numbers may seem too small for o↵ering appropriate security, but in the case of
our protocol, the cryptography only needs to withstand vote integrity attacks by
present adversaries during the election period. In other words, the cryptographic
parameters can be chosen for an exceptionally short cryptoperiod.
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Ballot Size
Table 1 lists the results obtained for di↵erent electorates. The table shows

that the size of a single ballot is certainly not a problem for voters to create
and submit a ballot, even if M gets very large. On the other hand, if each
voter submits a ballot, then the total size of the elections data sums up to more
than 50 GB of data for one million voters. Given today’s storage and network
capacities, this amount of data should still be manageable by an ordinary server
and communication infrastructure.

M = |U | Elements of Gp Elements of Zp, Gq Elements of Zq Single Ballot M Ballots

10 96 178 244 39.0 KB 0.4 MB
100 108 187 244 41.6 KB 4.1 MB

1’000 120 196 244 44.3 KB 43.2 MB
10’000 136 208 244 47.8 KB 466.5 MB

100’000 148 217 244 50.4 KB 4.8 GB
1’000’000 164 229 244 53.9 KB 51.4 GB

Table 2: Ballot size for di↵erent numbers of voters and parameters K = 80, L = 1,
|p| = 1024, and |q| = 160.

4.2 Cost of Computation: Ballot Generation

Let us now have a look at the cost of computation for generating a ballot.
Corresponding computational resources need to be available to the voter for
casting a vote. Again, generating the proofs ⇡1 and ⇡2 are the two critical tasks
in this process. Recall from Section 2 that generating ⇡1 requires a logarithmic
number of exponentiations in Gp, but also a linearithmic number of multiplications
in Zp. Since multiplications will become more expensive than exponentiations
when M gets very large, they can not be neglected. Table 3 contains the number
of critical operations in Gp, Gq, and Zp, and sums them up for the whole ballot.
Again, we exclude the cost for encrypting the vote and generating a proof of
known plaintext.

Ballot Component
Exponentiations

in Gp

Exponentiations
in Gq

Multiplications
in Zp

c, d, û 2 4 –
⇡1 8blog Mc + 4 – 2Mblog Mc
⇡2 2K + 2 K(L + 2) –
⇡3 – 4 –

Entire Ballot 8blog Mc + 2K + 8 KL + 2K + 8 2Mblog Mc

Table 3: Number of exponentiations and multiplications required to generate a single
ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

To estimate actual computation times for generating a ballot, we select the
same parameters as in the previous subsection. Furthermore, we assume that the
voter’s computer is capable of calculating 350 exponentiations per second in Gp,
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Cost of Ballot Generation

Table 1 lists the results obtained for di↵erent electorates. The table shows
that the size of a single ballot is certainly not a problem for voters to create
and submit a ballot, even if M gets very large. On the other hand, if each
voter submits a ballot, then the total size of the elections data sums up to more
than 50 GB of data for one million voters. Given today’s storage and network
capacities, this amount of data should still be manageable by an ordinary server
and communication infrastructure.

M = |U | Elements of Gp Elements of Zp, Gq Elements of Zq Single Ballot M Ballots

10 96 178 244 39.0 KB 0.4 MB
100 108 187 244 41.6 KB 4.1 MB

1’000 120 196 244 44.3 KB 43.2 MB
10’000 136 208 244 47.8 KB 466.5 MB

100’000 148 217 244 50.4 KB 4.8 GB
1’000’000 164 229 244 53.9 KB 51.4 GB

Table 2: Ballot size for di↵erent numbers of voters and parameters K = 80, L = 1,
|p| = 1024, and |q| = 160.

4.2 Cost of Computation: Ballot Generation

Let us now have a look at the cost of computation for generating a ballot.
Corresponding computational resources need to be available to the voter for
casting a vote. Again, generating the proofs ⇡1 and ⇡2 are the two critical tasks
in this process. Recall from Section 2 that generating ⇡1 requires a logarithmic
number of exponentiations in Gp, but also a linearithmic number of multiplications
in Zp. Since multiplications will become more expensive than exponentiations
when M gets very large, they can not be neglected. Table 3 contains the number
of critical operations in Gp, Gq, and Zp, and sums them up for the whole ballot.
Again, we exclude the cost for encrypting the vote and generating a proof of
known plaintext.

Ballot Component
Exponentiations

in Gp

Exponentiations
in Gq

Multiplications
in Zp

c, d, û 2 4 –
⇡1 8blog Mc + 4 – 2Mblog Mc
⇡2 2K + 2 K(L + 2) –
⇡3 – 4 –

Entire Ballot 8blog Mc + 2K + 8 KL + 2K + 8 2Mblog Mc

Table 3: Number of exponentiations and multiplications required to generate a single
ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

To estimate actual computation times for generating a ballot, we select the
same parameters as in the previous subsection. Furthermore, we assume that the
voter’s computer is capable of calculating 350 exponentiations per second in Gp,
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Cost of Ballot Generation

2’000 exponentiations per second in Gq, and 200’000 multiplications per second
in Zp. We derive these numbers from performance tests in Java on a MacBook
Pro with a 2.7 GHz Intel Core i7 processor (16GB RAM, OS X Yosemite 10.10.2,
JRE 8, standard BigInteger class, single-threaded). The results of our analysis
are shown in Table 4. The estimated cost of computation for generating a single
ballot turns out to be perfectly acceptable for a medium-sized or even a large
electorate. Only when M gets very large (e.g. more than 100’000 voters), the
ballot generation gets delayed inappropriately. This is roughly the threshold when
the multiplications start to dominate the exponentiations.

M = |U | Exponentiations
in Gp

Exponentiations
in Gq

Multiplications
in Zp

Estimated Time
(Single Ballot)

10 192 248 60 0.7 sec.
100 216 248 1’200 0.7 sec.

1’000 240 248 18’000 0.9 sec.
10’000 272 248 260’000 2.2 sec.

100’000 296 248 3’200’000 17.0 sec.
1’000’000 328 248 40’000’000 3.4 min.

Table 4: Cost of ballot generation for di↵erent numbers of voters and parameters K = 80,
L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350 exponentiations
per second in Gp, 2’000 exponentiations per second in Gq, and 200’000 multiplications
per second in Zp.

4.3 Cost of Computation: Verification

The most expensive computational task of our protocol is clearly the public
tallying, which involves the verification of all proofs included in the ballots. The
values shown in Table 5 summarize the number of critical operations in Gp, Gq,
and Zp for verifying a single ballot. For very large values of M , the most expensive
operations are again the 3M multiplications in Zp, which is why they cannot be
neglected. As before, the results shown in the table do not contain additional
operations for verifying the proof of known plaintext in case of an encrypted
vote. Note that proper verification requires checking that the values included in
the proof transcripts are elements of corresponding sets. In case of Gp and Gq

this may require additional exponentiations. We omit them here to be consistent
with the results given in [2, 3].

To conclude our performance analysis, we adopt the system parameters and
the assumptions with regard to the available computation power from the previous
subsection. The resulting values for di↵erent electorate sizes are shown in Table 6.
By multiplying the time estimates for verifying a single ballot by the total number
of votes, we obtain time estimates for the full verification process.

From the given results, we conclude again that our protocol works reasonably
well for a medium-sized or even a large electorate. Note that the verification of
the ballots can already start during the vote casting phase, and since it can be
executed in parallel, there is a huge potential for distributing the total amount of
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Cost of Ballot Verification

Ballot Component
Exponentiations

in Gp

Exponentiations
in Gq

Multiplications
in Zp

⇡1 6blog Mc + 6 – 2M
⇡2 2K + 1 K(L + 2) –
⇡3 – 6 –

Total 6blog Mc + 2K + 7 KL + k + 6 2M

Table 5: Number of exponentiations and multiplications required to verify a single ballot
(without proof of known plaintext of the encrypted vote).

M = |U |
Exponentia-

tions in
Gp

Exponentia-
tions in

Gq

Multiplica-
tions in

Zp

Estimated
Time (Single

Ballot)

Estimated
Time (M
Ballots)

10 185 166 30 0.6 sec. 6.1 sec.
100 203 166 300 0.7 sec. 1.1 min.

1’000 221 166 3’000 0.7 sec. 12.2 min.
10’000 245 166 30’000 0.9 sec. 2.6 hours

100’000 263 166 300’000 2.3 sec. 64.8 hours
1’000’000 287 166 3’000’000 15.9 sec. 4417.5 hours

Table 6: Cost of ballot verification for di↵erent numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

work to arbitrarily many and possibly more powerful machines. While this is in
principle a solution for reducing the 4’400 hours of computation for an election
with one million ballots to a more reasonable value, it restricts somewhat the
idea of a public tallying process.

4.4 Implementation and Optimizations

In course of developing the protocol presented in this paper, we implemented
both the set membership and the representation proof in UniCrypt [15]. This
is an open-source Java library developed for the purpose of simplifying the
implementation of cryptographic voting protocols.5 The library consist of a
mathematical and a cryptographic layer. The two implemented proofs extend the
proofsystem package, which is a central component of the cryptographic layer. The
same package also contains classes for generating all sorts of preimage or equality
proofs, which we need for computing ⇡3. Other packages in the cryptographic
layer provide implementations of Pedersen commitments and various encryption
schemes. The library provides therefore the full functionality for a straightforward
implementation of our protocol.

5 UniCrypt is publicly available on GitHub under a dual AGPLv3/commercial licence,
see https://github.com/bfh-evg/unicrypt.
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Ballot Component
Exponentiations

in Gp

Exponentiations
in Gq

Multiplications
in Zp

⇡1 6blog Mc + 6 – 2M
⇡2 2K + 1 K(L + 2) –
⇡3 – 6 –

Total 6blog Mc + 2K + 7 KL + k + 6 2M

Table 5: Number of exponentiations and multiplications required to verify a single ballot
(without proof of known plaintext of the encrypted vote).

M = |U |
Exponentia-

tions in
Gp

Exponentia-
tions in

Gq

Multiplica-
tions in

Zp

Estimated
Time (Single

Ballot)

Estimated
Time (M
Ballots)

10 185 166 30 0.6 sec. 6.1 sec.
100 203 166 300 0.7 sec. 1.1 min.

1’000 221 166 3’000 0.7 sec. 12.2 min.
10’000 245 166 30’000 0.9 sec. 2.6 hours

100’000 263 166 300’000 2.3 sec. 64.8 hours
1’000’000 287 166 3’000’000 15.9 sec. 4417.5 hours

Table 6: Cost of ballot verification for di↵erent numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

work to arbitrarily many and possibly more powerful machines. While this is in
principle a solution for reducing the 4’400 hours of computation for an election
with one million ballots to a more reasonable value, it restricts somewhat the
idea of a public tallying process.

4.4 Implementation and Optimizations

In course of developing the protocol presented in this paper, we implemented
both the set membership and the representation proof in UniCrypt [15]. This
is an open-source Java library developed for the purpose of simplifying the
implementation of cryptographic voting protocols.5 The library consist of a
mathematical and a cryptographic layer. The two implemented proofs extend the
proofsystem package, which is a central component of the cryptographic layer. The
same package also contains classes for generating all sorts of preimage or equality
proofs, which we need for computing ⇡3. Other packages in the cryptographic
layer provide implementations of Pedersen commitments and various encryption
schemes. The library provides therefore the full functionality for a straightforward
implementation of our protocol.

5 UniCrypt is publicly available on GitHub under a dual AGPLv3/commercial licence,
see https://github.com/bfh-evg/unicrypt.
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Time Measurements with UniCrypt

In order to check the accuracy of the calculated time estimates of the previ-
ous subsections, we used UniCrypt to generate and verify ballots for di↵erent
electorate sizes and measured the times of computation. The results of these
measurements are shown in Table 7. We used the same machine for the tests as in
the previous subsection, a MacBook Pro with a 2.7 GHz Intel Core i7 processor,
and the current UniCrypt version from the project’s development branch on April
1, 2015. In general, the measured running times are quite consistent with the time
estimates from the previous section, for example 18.2 instead of 17.0 seconds for
generating a ballot with 100’000 voters. This di↵erence can be explained by the
overhead for other less expensive operations and for Java’s memory and object
management. Note that for 1’000’000 voters, the actual running times are even
slightly better than the estimates (3.3 instead of 3.4 minutes). An explanation
for this is the fact, that 2Mblog Mc is an upper approximation for the number
of multiplications in Zp.

M = |U | Ballot Generation Ballot Verification

10 1.3 sec. 0.9 sec.
100 1.4 sec. 1.0 sec.

1’000 1.6 sec. 1.1 sec.
10’000 3.0 sec. 1.3 sec.

100’000 18.2 sec. 2.9 sec.
1’000’000 3.3 min. 18.8 sec.

Table 7: Actual running times for generating and verifying a single ballot using the
UniCrypt library.

To conclude the discussion about our implementation and the results of the
performance analysis, we need to stress that the prototype implementation has
not been optimized in any way. To speed up the ballot generation, we may pre-
compute the proofs in a background process of the vote preparation software, and
we may distribute the computations to all available cores of the given machine,
or to the machine’s graphics processing unit. In the final verification of all ballots,
the potential of executing tasks in parallel—possibly on many di↵erent machines—
is even higher. Furthermore, techniques like multi-exponentiation and fixed-base
exponentiation may bring considerable performance improvements, especially for
small elections, where the exponentiations predominate the multiplications. For
very large elections, we should consider replacing the set membership proof as
described in this paper by an approach by Brands et al. [5], which requires 8

p
M

exponentiations but only 2M + 8
p

M multiplications for generating a proof.

5 Conclusion

In this paper, we have introduced a new approach for a cryptographic voting
protocol. Its underlying mechanism is very di↵erent compared to mainstream
approaches based on mixing and homomorphic tallying. In our protocol, the
distinction between valid and invalid ballots is strictly based on perfectly hiding
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Summary

New approach based on different cryptographic primitives

Pros

Everlasting privacy
No trusted authorities (except for fairness)
Simplicity of voting process
Implementation available in UniCrypt

Cons

Anonymous channel required for vote casting
Relatively expensive ballot generation/verification
Restricted scalability
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Outlook

Optimize the implementation

multi-exponentiation
fix-base exponentiation
parallel execution on multiple cores
use polynomial evaluation proof by Brands et al. (2007) when
M gets very large

Add receipt-freeness (we have a solution!) or coercion-
resistance

Generate return codes?
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