Verifiable Internet Elections with Everlasting Privacy and Minimal Trust

Rolf Haenni (co-work with Philipp Locher)
Scytl, Barcelona, April 23, 2015

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Vote Privacy Assumptions

"Any adversary is polynomial-time bounded."
"A threshold number of authorities is trustworthy."

Protocol Overview

- Goal: Make vote privacy independent of
- computational intractability assumptions
> trusted authorities
- Involved parties
- election administration
- voters
- public bulletin board
- verifiers (the public)
- Cryptographic ingredients: perfectly hiding commitments, non-interactive zero-knowledge proofs (NIZKP)

Step 1: Registration

The voter...

- creates a pair of private and public credentials
- sends the public credential to the election administration (over an authentic channel)

Step 2: Election Preparation

The election administration...

- publishes the list of public voter credentials on bulletin board

Step 3: Vote Casting

The voter...
> creates ballot consisting of

- commitment to public credential
- NIZKP that the commitment contains a valid public credential
- NIZKP of knowing the corresponding private credential
- vote
- sends ballot to bulletin board (over an anonymous channel)

Step 4: Public Tallying

The verifier...

- retrieves the election data from bulletin board
- checks proofs contained in each ballot
- computes the election result

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Cryptographic Setup

- Let \mathcal{G}_{p} be a cyclic group of prime order p with independent generators g_{0}, g_{1}
Let $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ be a sub-group of prime order $q \mid(p-1)$ with independent generators $h_{0}, h_{1}, \ldots, h_{N}$
- Assume that DL has no efficient solution in \mathcal{G}_{p} and \mathbb{G}_{q}

Pedersen Commitments

- Pedersen commitment over \mathcal{G}_{p}, for $u, r \in \mathbb{Z}_{p}$

$$
\operatorname{com}_{p}(u, r)=g_{0}^{r} g_{1}^{u}
$$

- Pedersen commitment over \mathbb{G}_{q}, for $v, s \in \mathbb{Z}_{q}$

$$
\begin{aligned}
\operatorname{com}_{q}(v, s) & =h_{0}^{s} h_{1}^{v} \\
\operatorname{com}_{q}\left(v_{1}, \ldots, v_{N}, s\right) & =h_{0}^{s} h_{1}^{v_{1}} \cdots h_{N}^{v_{N}}
\end{aligned}
$$

- Perfectly hiding, computationally binding, homomorphic

Non-Interactive Preimage Proofs

- Goal: prove knowledge of preimage of a given value

$$
\operatorname{NIZKP}[(a): b=\phi(a)]
$$

- Secret input
> $a \in X$
- Public inputs
- Homomorphic one-way function $\phi: X \rightarrow Y$
> $b=\phi(a) \in Y$
- Standard construction
> \sum-protocol
- Fiat-Shamir heuristic using hash function
- Proof transcript: $\pi=(t, s) \in Y \times X$

Examples of Preimage Proofs

- Knowledge of discrete logarithm (Schnorr)

$$
\operatorname{NIZKP}\left[(a): b=g^{a}\right]
$$

- Equality of discrete logarithms (Chaum-Pedersen)

$$
\operatorname{NIZKP}\left[(a): b_{1}=g_{1}^{a} \wedge b_{2}=g_{2}^{a}\right]
$$

- Ability of opening a Pedersen commitment

$$
\operatorname{NIZKP}\left[(u, r): c=\operatorname{com}_{p}(u, r)\right]
$$

- Knowledge of ElGamal plaintext

$$
\operatorname{NIZKP}\left[(m, r): e=\operatorname{EIGamal}_{p k}(m, r)\right]
$$

Set Membership Proof

Set Membership Proof

- Goal: prove that a committed value belongs to a given set

$$
\operatorname{NIZKP}\left[(u, r): c=\operatorname{com}_{p}(u, r) \wedge u \in U\right]
$$

- Secret inputs
> $u, r \in \mathbb{Z}_{p}$
- Public inputs
- Commitment $c=\operatorname{com}_{p}(u, r) \in \mathcal{G}_{p}$
- Set $U=\left\{u_{1}, \ldots, u_{M}\right\}$ of values $u_{i} \in \mathbb{Z}_{p}$

General Construction

- Proposed by Brands et al. (2007)
- Let $P(X)=\prod_{i=1}^{M}\left(X-u_{i}\right)$ satisfying $P\left(u_{i}\right)=0$ for all $u_{i} \in U$
- Set membership proof

$$
\begin{aligned}
\operatorname{NIZKP}[(u, r): c & \left.=\operatorname{com}_{p}(u, r) \wedge u \in U\right] \\
& \Longleftrightarrow \\
\operatorname{NIZKP}[(u, r): c= & \left.\operatorname{com}_{p}(u, r) \wedge P(u)=0\right]
\end{aligned}
$$

Polynomial Evaluation Proof

- Polynomial evaluation proof by Bayer and Groth (2013)
$\operatorname{NIZKP[(u,r,v,s):c=\operatorname {com}_{p}(u,r)\wedge d=\operatorname {com}_{p}(v,s)\wedge P(u)=v]}$
- Performance (for $v=s=0$)
- Transcript: $4 \log M$ elements of $\mathcal{G}_{p}, 3 \log M$ elements of \mathbb{Z}_{p}
- Generation: $O(M \log M)$ $8 \log M$ exponentiations in $\mathcal{G}_{p}, 2 M \log M$ multiplications in \mathbb{Z}_{p}
- Verification: $O(M)$
$6 \log M$ exponentiations in $\mathcal{G}_{p}, 3 M$ multiplications in \mathbb{Z}_{p}

Public Input: $c=\operatorname{com}_{p}(u, r) \in \mathcal{G}_{p}, P(X)=\sum_{i=0}^{M} a_{i} X^{i} \in \mathbb{Z}_{p}[X]$
Secret Input: $u, r \in \mathbb{Z}_{p}$

Generation:

1. For $j=1, \ldots, m$, pick $r_{j} \in_{R} \mathbb{Z}_{p}$ and compute $c_{j}=\operatorname{com}_{p}\left(u^{2^{j}}, r_{j}\right)$.
2. For $j=0, \ldots, m$, pick $\bar{a}_{j}, \bar{r}_{j} \in \mathbb{Z}_{p}$ and compute $\bar{c}_{j}=\operatorname{com}_{p}\left(\bar{a}_{j}, \bar{r}_{j}\right)$.
3. Compute new polynomial

$$
\tilde{P}(X)=\sum_{j=0}^{m} \tilde{a}_{j} X^{j}=\sum_{i=0}^{M} a_{i} \prod_{j=0}^{m}\left(u^{2^{j}} X+\bar{a}_{j}\right)^{i[j]} X^{1-i[j]} \in \mathbb{Z}_{p}[X]
$$

of degree m. For $j=0, \ldots, m$, pick $\tilde{r}_{j} \in_{R} \mathbb{Z}_{p}$ and compute $\tilde{c}_{j}=$ $\operatorname{com}_{p}\left(\tilde{a}_{j}, \tilde{r}_{j}\right)$.
4. For $j=0, \ldots, m-1$, compute $\hat{a}_{j}=u^{2^{j}} \bar{a}_{j}$, pick $\hat{r}_{j} \in_{R} \mathbb{Z}_{p}$, and compute $\hat{c}_{j}=\operatorname{com}_{p}\left(\hat{a}_{j}, \hat{r}_{j}\right)$.
5. Compute $x=h\left(c, a_{0}, \ldots, a_{M}, c_{1}, \ldots, c_{m}, \bar{c}_{0}, \ldots, \bar{c}_{m}, \tilde{c}_{0}, \ldots, \tilde{c}_{m}, \hat{c}_{0}, \ldots, \hat{c}_{m-1}\right)$.
6. For $j=0, \ldots, m$, compute $\bar{a}_{j}^{\prime}=\bar{a}_{j}+x u^{2^{j}}$.
7. For $j=0, \ldots, m$, compute $\bar{r}_{j}^{\prime}=\bar{r}_{j}+x r_{j}$.
8. For $j=0, \ldots, m-1$, compute $\hat{r}_{j}^{\prime}=\hat{r}_{j}+x r_{j+1}-b_{j} r_{j}$.
9. Compute $\tilde{r}^{\prime}=\sum_{j=0}^{m} \tilde{r}_{j} x^{j}$.

Transcript:

$\left(c_{1}, \ldots, c_{m}, \bar{c}_{0}, \ldots, \bar{c}_{m}, \tilde{c}_{0}, \ldots, \tilde{c}_{m}, \hat{c}_{0}, \ldots, \hat{c}_{m-1}, \bar{a}_{0}^{\prime}, \ldots, \bar{a}_{m}^{\prime}, \bar{r}_{0}^{\prime}, \ldots, \bar{r}_{m}^{\prime}, \hat{r}_{0}^{\prime}, \ldots, \hat{r}_{m-1}^{\prime}, \tilde{r}^{\prime}\right)$

Verification:

1. Compute $x=h\left(c, a_{0}, \ldots, a_{M}, c_{1}, \ldots, c_{m}, \bar{c}_{0}, \ldots, \bar{c}_{m}, \tilde{c}_{0}, \ldots, \tilde{c}_{m}, \hat{c}_{0}, \ldots, \hat{c}_{m-1}\right)$.
2. For $j=0, \ldots, m$, check $c_{j}^{x} \bar{c}_{j}=\operatorname{com}_{p}\left(\bar{a}_{j}^{\prime}, \bar{r}_{j}^{\prime}\right)$.
3. For $j=0, \ldots, m-1$, check $c_{j+1}^{x} \hat{c}_{j}=c_{j}^{\bar{a}_{j}^{\prime}} \cdot \operatorname{com}_{p}\left(0, \hat{r}_{j}^{\prime}\right)$.
4. Check

$$
\prod_{j=0}^{m} \tilde{c}_{j}^{x^{j}}=\operatorname{com}_{p}\left(\sum_{i=0}^{M} a_{i} \prod_{j=0}^{m} \bar{a}_{j}^{\prime i[j]} x^{1-i[j]}, \tilde{r}^{\prime}\right)
$$

Representation Proof

DL-Representation

\downarrow Let $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*}$ be a cyclic group of order q and $h_{1}, \ldots, h_{N} \in \mathbb{G}_{q}$

- A tuple $\left(v_{1}, \ldots, v_{N}\right) \in \mathbb{Z}_{q}^{N}$ is a DL-representation of $u \in \mathbb{G}_{q}$ relative to h_{1}, \ldots, h_{N}, if

$$
u=h_{1}^{v_{1}} \cdots h_{N}^{v_{N}}
$$

- Note that $\mathbb{G}_{q} \subset \mathbb{Z}_{p}^{*} \subset \mathbb{Z}_{p}$ implies $u \in \mathbb{Z}_{p}$

Representation Proof

- Goal: prove that a commitment contains a DL-representation of another committed value

$$
\begin{aligned}
& \operatorname{NIZKP[(u,r,v_{1},\ldots ,v_{N},s):c=\operatorname {com}_{p}(u,r)\wedge } \\
& \left.\quad d=\operatorname{com}_{q}\left(v_{1}, \ldots, v_{N}, s\right) \wedge u=h_{1}^{v_{1}} \cdots h_{N}^{v_{N}}\right]
\end{aligned}
$$

- Secret inputs
- $u, r \in \mathbb{Z}_{p}$
$>v_{1}, \ldots, v_{N}, s \in \mathbb{Z}_{q}$
- Public inputs
- Commitment $c=\operatorname{com}_{p}(u, r) \in \mathcal{G}_{p}$
- Commitment $d=\operatorname{com}_{q}\left(v_{1}, \ldots, v_{N}, s\right) \in \mathbb{G}_{q}$

Representation Proof

- Au, Susilo, Mu (2010) proposed an extension of the double discrete logarithm proof by Camenisch and Stadler (1997)
- Let K be a security parameter (e.g. $K=80$)
- Performance
- Transcript: K elements of $\mathcal{G}_{p}, \mathbb{G}_{q}, \mathbb{Z}_{p}, K N$ elements of \mathbb{Z}_{q}
- Generation and verification: $O(K N)$ $2 K$ exponentiations in $\mathcal{G}_{p}, K N$ exponentiations in \mathbb{G}_{q}

Public Input: $c=\operatorname{com}_{p}(u, r) \in \mathcal{G}_{p}, d=\operatorname{com}_{q}\left(v_{1}, \ldots, v_{N}, s\right) \in \mathbb{G}_{q}$
Secret Input: $u, r \in \mathbb{Z}_{p}, v_{1}, \ldots, v_{N}, s \in \mathbb{Z}_{q}$

Generation:

1. Pick $\bar{u}, \bar{r} \in_{R} \mathbb{Z}_{p}$ and compute $\bar{c}=\operatorname{com}_{p}(\bar{u}, \bar{r})$.
2. For $j=1, \ldots, K$,
(a) pick $\bar{v}_{1, j}, \ldots, \bar{v}_{N, j} \in_{R} \mathbb{Z}_{q}$ and compute $\bar{u}_{j}=h_{1}^{\bar{v}_{1, j}} \cdots h_{N}^{\bar{v}_{N, j}}$,
(b) pick $\bar{r}_{j} \in_{R} \mathbb{Z}_{p}$ and compute $\bar{c}_{j}=\operatorname{com}_{p}\left(\bar{u}_{j}, \bar{r}_{j}\right)$,
(c) pick $\bar{s}_{j} \in R \mathbb{Z}_{q}$ and compute $\bar{d}_{j}=\operatorname{com}_{q}\left(\bar{v}_{1, j}, \ldots, \bar{v}_{N, j}, \bar{s}_{j}\right)$.
3. Compute $x=h\left(c, d, \bar{c}, \bar{c}_{1}, \ldots, \bar{c}_{k}, \bar{d}_{1}, \ldots, \bar{d}_{k}\right)$.
4. Compute $\bar{u}^{\prime}=\bar{u}-x u$ and $\bar{r}^{\prime}=\bar{r}-x r$.
5. For $j=1, \ldots, K$,
(a) for $i=1, \ldots, N$, compute $\bar{v}_{i, j}^{\prime}=\bar{v}_{i, j}-x[j] v_{i}$,
(b) compute $\bar{r}_{j}^{\prime}=\bar{r}_{j}-x[j] \cdot \operatorname{com}_{q}\left(\bar{v}_{1, j}^{\prime}, \ldots, \bar{v}_{N, j}^{\prime}, r\right)$,
(c) compute $\bar{s}_{j}^{\prime}=\bar{s}_{j}-x[j] s$.

Transcript:

$\left(\bar{c}, \bar{c}_{1}, \ldots, \bar{c}_{k}, \bar{d}_{1}, \ldots, \bar{d}_{k}, \bar{u}^{\prime}, \bar{r}^{\prime}, \bar{v}_{1,1}^{\prime}, \ldots, \bar{v}_{N, K}^{\prime}, \bar{r}_{1}^{\prime}, \ldots, \bar{r}_{k}^{\prime}, \bar{s}_{1}^{\prime}, \ldots, \bar{s}_{k}^{\prime}\right)$

Verification:

1. Compute $x=h\left(c, d, \bar{c}, \bar{c}_{1}, \ldots, \bar{c}_{k}, \bar{d}_{1}, \ldots, \bar{d}_{k}\right)$.
2. Check $\bar{c}=c^{x} \cdot \operatorname{com}_{p}\left(\bar{u}^{\prime}, \bar{r}^{\prime}\right)$.
3. For $j=1, \ldots, K$,
(a) check $\bar{d}_{j}=d^{x[j]} \cdot \operatorname{com}_{q}\left(\bar{v}_{1, j}^{\prime}, \ldots, \bar{v}_{N, j}^{\prime}, \bar{s}_{j}^{\prime}\right)$,
(b) compute $\bar{u}_{j}^{\prime}=h_{1}^{\bar{u}_{1, j}^{\prime}} \cdots h_{N}^{\bar{v}_{N, j}^{\prime}}$, and check

$$
\bar{c}_{j}= \begin{cases}\operatorname{com}_{p}\left(\bar{u}_{j}^{\prime}, \bar{r}_{j}^{\prime}\right), & \text { if } x[j]=0, \\ c^{\bar{u}_{j}^{\prime}} \cdot \operatorname{com}_{p}\left(0, \bar{r}_{j}^{\prime}\right), & \text { if } x[j]=1\end{cases}
$$

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Step 1: Registration

The voter...

- creates a pair of private and public credentials
- sends the public credential to the election administration (over an authentic channel)

Step 1: Registration

The voter...

- creates a pair of private and public credentials

$$
\begin{gathered}
\alpha, \beta \in_{R} \mathbb{Z}_{q} \\
u=h_{1}^{\alpha} h_{2}^{\beta} \in \mathbb{G}_{q}
\end{gathered}
$$

- sends the public credential u to the election administration (over an authentic channel)

Step 2: Election Preparation

The election administration...

- publishes the list of public voter credentials on bulletin board

Step 2: Election Preparation

The election administration...

- defines the list of public voter credentials $U=\left\{u_{1}, \ldots, u_{M}\right\}$
- computes coefficients a_{0}, \ldots, a_{M} of polynomial

$$
P(X)=\prod_{i=1}^{M}\left(X-u_{i}\right)=\sum_{i=0}^{M} a_{i} X^{i}
$$

- selects independent election generator $\hat{h} \in \mathbb{G}_{q}$
> publishes $\left(U, a_{0}, \ldots, a_{M}, \hat{h}\right)$ on bulletin board

Step 3: Vote Casting

The voter...
> creates ballot consisting of

- commitment the public credential
- NIZKP that the commitment contains a valid public credential
- NIZKP of knowing the corresponding private credential
- vote
- sends ballot to bulletin board (over an anonymous channel)

Step 3: Vote Casting

The voter...

- creates ballot $B=\left(c, d, e, \hat{u}, \pi_{1}, \pi_{2}, \pi_{3}\right)$ consisting of
- commitment to public credential $c=\operatorname{com}_{p}(u, r)$

$$
\pi_{1}=\operatorname{NIZKP}\left[(u, r): c=\operatorname{com}_{p}(u, r) \wedge P(u)=0\right]
$$

- commitment to private credential $d=\operatorname{com}_{q}(\alpha, \beta, s)$

$$
\pi_{2}=\operatorname{NIZKP}\left[(u, r, \alpha, \beta, s): c=\operatorname{com}_{p}(u, r) \wedge d=\operatorname{com}_{q}(\alpha, \beta, s) \wedge u=h_{1}^{\alpha} h_{2}^{\beta}\right]
$$

- vote e
- election credential $\hat{u}=\hat{h}^{\beta}$

$$
\pi_{3}=\operatorname{NIZKP}\left[(\alpha, \beta, s): d=\operatorname{com}_{q}(\alpha, \beta, s) \wedge \hat{u}=\hat{h}^{\beta}\right]
$$

- sends ballot B to bulletin board (over an anonymous channel)

Step 4: Public Tallying

The verifier...

- retrieves the election data from bulletin board
- checks proofs contained in each ballot
- computes the election result

Step 4: Public Tallying

The verifier ...

- retrieves the election data from bulletin board

$$
U, a_{0}, \ldots, a_{M}, \hat{h}, \mathcal{B}
$$

- checks proofs $\pi_{1}, \pi_{2}, \pi_{3}$ contained in each ballot $B \in \mathcal{B}$
- detects ballots with identical values \hat{u} and resolve conflicts
- computes the election result from votes v contained in $\mathcal{B}^{\prime} \subseteq \mathcal{B}$

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Adversary Model

- Present adversaries are polynomial-time bounded and thus ...
- unable to solve DL efficiently in \mathcal{G}_{p} and \mathbb{G}_{q}
- unable to compute hash ${ }^{-1}(h)$
- Future adversaries will have unrestricted computational resources and are therefore
\triangleright able to solve DL efficiently in \mathcal{G}_{p} and \mathbb{G}_{q}
- able to compute hash ${ }^{-1}(h)$

Correctness

Attack by present adversary (during or shortly after election)

- Case 1: Present adversary \neq voter
- Find representation $\left(\alpha^{\prime}, \beta^{\prime}\right)$ for some $u \in U$ \rightarrow equivalent to solving DL
- Simulate $\pi_{1}, \pi_{2}, \pi_{3}$ without valid secret inputs ($\alpha^{\prime}, \beta^{\prime}$) \rightarrow equivalent to solving DL or inverting hash function
- Case 2: Present adversary $=$ voter
- Use different $\beta^{\prime} \neq \beta$ in a second ballot and simulate π_{3} \rightarrow equivalent to solving DL or inverting hash function

Privacy

Attack by future adversary (possibly in the far future)

- For every $B=\left(c, d, e, \hat{u}, \pi_{1}, \pi_{2}, \pi_{3}\right) \in \mathcal{B}$
- compute β satisfying $\hat{u}=\hat{h}^{\beta}$
- compute (α^{\prime}, β) satisfying $u^{\prime}=h_{1}^{\alpha^{\prime}} h_{2}^{\beta}$ for every $u^{\prime} \in U$
- Therefore, uncovering β from every ballot does not reveal anything about the links between \mathcal{B} and U
- Note that c, d are perfectly hiding and $\pi_{1}, \pi_{2}, \pi_{3}$ are perfect zero-knowledge

Extensions

- To achieve fairness, the vote must be encrypted
- Generate encryption key pair ($s k, p k$) during election preparation
- Encrypt vote using pk during vote casting
- Publish sk to initiate public tallying
- Extended credentials are required to vote multiple times
- Private credentials $\left(\alpha, \beta_{1}, \ldots, \beta_{L}\right)$
- Public credentials $u=h_{1}^{\alpha} h_{2}^{\beta_{1}} \cdots h_{L+1}^{\beta_{L}}$
- Use different β_{i} for each election
- To allow vote updating, some other minor adjustments are necessary

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Ballot Size

Ballot Component	Elements of \mathcal{G}_{p}	Elements of $\mathbb{Z}_{p}, \mathbb{G}_{q}$	Elements of \mathbb{Z}_{q}
c, d, \hat{u}	1	2	-
π_{1}	$4\lfloor\log M\rfloor+2$	$3\lfloor\log M\rfloor+3$	-
π_{2}	$K+1$	$2 K+2$	$K(L+2)$
π_{3}	-	2	4
Entire Ballot	$4\lfloor\log M\rfloor+K+4$	$3\lfloor\log M\rfloor+2 K+9$	$K L+2 K+4$

Table 1: Ballot size as a function of M, K, and L (without encrypted vote and proof of known plaintext of the encrypted vote). Elements of \mathbb{Z}_{p} and \mathbb{G}_{q} are counted together.

Ballot Size

$M=\|U\|$	Elements of \mathcal{G}_{p}	Elements of $\mathbb{Z}_{p}, \mathbb{G}_{q}$	Elements of \mathbb{Z}_{q}	Single Ballot	M Ballots
10	96	178	244	39.0 KB	0.4 MB
100	108	187	244	41.6 KB	4.1 MB
$1^{\prime} 000$	120	196	244	44.3 KB	43.2 MB
$10^{\prime} 000$	136	208	244	47.8 KB	466.5 MB
$100^{\prime} 000$	148	217	244	50.4 KB	4.8 GB
$1^{\prime} 000^{\prime} 000$	164	229	244	53.9 KB	51.4 GB

Table 2: Ballot size for different numbers of voters and parameters $K=80, L=1$, $|p|=1024$, and $|q|=160$.

Cost of Ballot Generation

Ballot Component	Exponentiations in \mathcal{G}_{p}	Exponentiations in \mathbb{G}_{q}	Multiplications in \mathbb{Z}_{p}
c, d, \hat{u}	2	4	-
π_{1}	$8\lfloor\log M\rfloor+4$	-	$2 M\lfloor\log M\rfloor$
π_{2}	$2 K+2$	$K(L+2)$	-
π_{3}	-	4	-
Entire Ballot	$8\lfloor\log M\rfloor+2 K+8$	$K L+2 K+8$	$2 M\lfloor\log M\rfloor$

Table 3: Number of exponentiations and multiplications required to generate a single ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

Cost of Ballot Generation

$M=\|U\|$	Exponentiations in \mathcal{G}_{p}	Exponentiations in \mathbb{G}_{q}	Multiplications in \mathbb{Z}_{p}	Estimated Time (Single Ballot)
10	192	248	60	0.7 sec.
100	216	248	$1^{\prime} 200$	0.7 sec.
$1^{\prime} 000$	240	248	$18^{\prime} 000$	0.9 sec.
$10^{\prime} 000$	272	248	$260^{\prime} 000$	2.2 sec.
$100^{\prime} 000$	296	248	$3^{\prime} 200^{\prime} 000$	17.0 sec.
$1^{\prime} 000^{\prime} 000$	328	248	$40^{\prime} 0000^{\prime} 000$	3.4 min.

Table 4: Cost of ballot generation for different numbers of voters and parameters $K=80$, $L=1,|p|=1024$, and $|q|=160$. The time estimates are based on 350 exponentiations per second in $\mathcal{G}_{p}, 2^{\prime} 000$ exponentiations per second in \mathbb{G}_{q}, and $200 ' 000$ multiplications per second in \mathbb{Z}_{p}.

Cost of Ballot Verification

Ballot Component	Exponentiations in \mathcal{G}_{p}	Exponentiations in \mathbb{G}_{q}	Multiplications in \mathbb{Z}_{p}
π_{1}	$6\lfloor\log M\rfloor+6$	-	$2 M$
π_{2}	$2 K+1$	$K(L+2)$	-
π_{3}	-	6	-
Total	$6\lfloor\log M\rfloor+2 K+7$	$K L+k+6$	$2 M$

Table 5: Number of exponentiations and multiplications required to verify a single ballot (without proof of known plaintext of the encrypted vote).

Cost of Ballot Verification

$M=\|U\|$	Exponentia- tions in \mathcal{G}_{p}	Exponentia- tions in \mathbb{G}_{q}	Multiplica- tions in \mathbb{Z}_{p}	Estimated Time (Single Ballot)	Estimated Time $(M$ Ballots)
10	185	166	30	0.6 sec.	6.1 sec.
100	203	166	300	0.7 sec.	1.1 min.
$1^{\prime} 000$	221	166	3000	0.7 sec.	12.2 min.
$10^{\prime} 000$	245	166	$30^{\prime} 000$	0.9 sec.	2.6 hours
$100^{\prime} 000$	263	166	$300^{\prime} 000$	2.3 sec.	64.8 hours
$1^{\prime} 000^{\prime} 000$	287	166	$3^{\prime} 0000^{\prime} 000$	15.9 sec.	4417.5 hours

Table 6: Cost of ballot verification for different numbers of voters and parameters $K=80, L=1,|p|=1024$, and $|q|=160$. The time estimates are based on 350 exponentiations per second in $\mathcal{G}_{p}, 2^{\prime} 000$ exponentiations per second in \mathbb{G}_{q}, and 200'000 multiplications per second in \mathbb{Z}_{p}.

Time Measurements with UniCrypt

$M=\|U\|$	Ballot Generation	Ballot Verification
10	1.3 sec.	0.9 sec.
100	1.4 sec.	1.0 sec.
$1^{\prime} 000$	1.6 sec.	1.1 sec.
$10^{\prime} 000$	3.0 sec.	1.3 sec.
$100^{\prime} 000$	18.2 sec.	2.9 sec.
$1^{\prime} 000^{\prime} 000$	3.3 min.	18.8 sec.

Table 7: Actual running times for generating and verifying a single ballot using the UniCrypt library.

Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries

Set Membership Proof
Representation Proof

- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

Summary

- New approach based on different cryptographic primitives
- Pros
- Everlasting privacy
- No trusted authorities (except for fairness)
- Simplicity of voting process
- Implementation available in UniCrypt
- Cons
- Anonymous channel required for vote casting
- Relatively expensive ballot generation/verification
- Restricted scalability

Outlook

- Optimize the implementation
- multi-exponentiation
- fix-base exponentiation
- parallel execution on multiple cores
- use polynomial evaluation proof by Brands et al. (2007) when M gets very large
- Add receipt-freeness (we have a solution!) or coercionresistance
- Generate return codes?

