
A Lightweight Implementation of a Shuffle Proof
for Electronic Voting Systems

Philipp Locher1,2 and Rolf Haenni1

1 Research Institute for Security in the Information Society
Bern University of Applied Sciences, CH-2501 Biel, Switzerland

{philipp.locher, rolf.haenni}@bfh.ch
2 Department of Informatics

University of Fribourg, CH-1700 Fribourg, Switzerland
philipp.locher@unifr.ch

Abstract: In the usual setting of a verifiable mix-net, an input batch of ciphertexts is
shuffled through a series of mixers into an output batch of ciphertexts while hiding
the mapping between input and output and preserving the plaintexts. Unlike shuffling,
proving the correctness of a shuffle is relatively expensive and difficult to implement. In
this paper, we present a new implementation of a shuffle proof based on the proof system
proposed by Wikström and Terelius. The implementation offers a clean and intuitive
application programming interface and can be used as a lightweight cryptographic
component in applications of verifiable mix-nets. Verifiable electronic voting is the
most prominent target application area.1

1 Introduction

Verifiable mix-nets are important building blocks in electronic voting protocols. They
are used to provide vote secrecy by anonymizing the voting channel from the voter into
the final tally. Some protocols use re-encryption mix-nets to shuffle the list of encrypted
votes [BGP11, RBH+09, RBH+09], while other protocols require mix-nets to shuffle
the voters’ credentials [Nef01, JCJ05, HS11]. In both cases, the shuffling is performed
through a series of mixers. To demonstrate the correctness of a mix-net shuffle, mixers
provide individual zero-knowledge proofs—called shuffle proofs—to certify each step of
the shuffling process. The link between the input and output of a mix-net remains hidden,
as long as at least one trustworthy mixer is involved in the shuffling.

Shuffle proofs can be constructed in various ways. The first efficient shuffle proofs were
proposed independently by Neff [Nef01] and Furukawa and Sako [FS01]. Neff’s approach,
which is based on the invariance of polynomials under the permutation of their roots, has
later been improved by Groth, Ishai, and Bayer [Gro10, GI08, BG12]. The Furukawa
and Sako approach is based on a commitment to a permutation matrix. Later, Wikström
showed how to split the shuffle proof in an offline and online phase [Wik09]. Together with

1This work is supported by the Swiss National Science foundation, under the grant 200021L-140650/1.

1391

Terelius, Wikström presented an improved and generalized proof, that allows choosing the
permutation from a restricted subset of all permutations [TW10].

To the best of our knowledge, Wikström’s Verificatum is currently the only off-the-shelf
mix-net implementation that offers a complete shuffle proof [Wik13]. Verificatum has
been used in the 2013 parliamentary election in Norway and for University elections in
Israel. The complete Java source code is publicly available under a research license. Aside
from Verificatum, multiple prototype implementations of shuffle proofs with corresponding
performance tests have been mentioned in the literature [FMM+02,FMS10,BGP11,BG12],
but none of them is available as a stand-alone library. The most recent performance
analysis in [BG12] reports slightly better running times for Groth’s approach compared
to Verificatum, but this can be explained by the chosen programming languages (C++ vs.
Java) and different levels of code optimization.

Contribution. We present a new implementation of a shuffle proof based on the proof
system of Wikström and Terelius [Wik09,TW10]. Our implementation differs from Ver-
ificatum in multiple ways. First, we have embedded the shuffle proof in a cryptographic
library with a clean and intuitive application programming interface. This greatly simplifies
the integration of a shuffle proof in applications such as a mix-net. In other words, while
Verificatum is a full-featured mix-net, we provide the necessary toolbox for building one.
Second, as part of a cryptographic library, our implementation offers enhanced flexibility
with respect to the homomorphic encryption system in use or the underlying algebraic
group. It also supports proofs for shuffles that are not based on re-encryption, for example
the one required in [HS11] for mixing voter credentials. Our shuffle proof implementation
is therefore applicable in many different scenarios and is not even restricted to the context
of verifiable mix-nets [Joa14]. The whole library comes as a lightweight Java component,
which can be ported to any device—even to a notebook or smartphone—running a Java
Virtual Machine. The source code is publicly available and free for non-commercial use.

Paper Overview. This paper gives an introduction and overview of our shuffle proof
implementation. Section 2 presents a summary of the necessary technical background to
understand Wikström’s shuffle proof as implemented. Section 3 first gives some details
about the design of the whole library and its components, and then presents a complete
example of usage from a programmer’s perspective. Section 4 concludes the paper with an
outlook and an overview of ongoing work.

2 Shuffle Proof

We give a short introduction to Wikström’s shuffle proof as presented in [Wik09, TW10].
To accentuate its essence, we fade out some technical details in our summary of the proof.
In particular, we describe the proof in terms of two homomorphic one-way functions, from
which respective preimage proofs are derived. We believe that the compactness of this
representation is very instructive and simplifies the understanding of the proof.

1392

2.1 Cryptographic Preliminaries

We denote by Gq a cyclic group of prime order q, for which the decisional Diffie-Hellman
assumption is believed to hold. For simplicity, we write Gq always multiplicatively and
assume that independent generators g, h

1

, . . . , hN 2 Gq are publicly known (for N = 1
we write h = h

1

). For an arbitrary group H and any pair of vectors ū 2 HN and ē 2 ZN ,
we use the notation hū, ēi for both

PN
i=1

eiui and
QN

i=1

ue
i

i , depending on whether H is
written additively or multiplicatively. For an arbitrary finite set S, we write r 2R S for
picking the value r uniformly at random from S.

Generalized Pedersen Commitments. We use Pedersen commitments Com(m, r) =
grhm over Gq to commit to an integer m 2 Zq with randomization r 2R Zq . To commit to
a vector m̄ = (m

1

, . . . ,mN) 2 ZN
q of integers, we use generalized Pedersen commitments

Com(m̄, r) = gr
QN

i=1

hm
i

i . To commit to an N⇥N -matrix M 2 ZN⇥N
q , we compute

generalized Pedersen commitments column-wise by

Com(M, r̄) =
�

Com(m̄
1

, r
1

), . . . ,Com(m̄N , rN)
�

,

where m̄j denotes the j-th column of M and r̄ = (r
1

, . . . , rN) 2R ZN
q the corresponding

randomization vector. In case M is a permutation matrix relative to a permutation ⇡ of size
N , then committing to M in this way allows computing a commitment to a permuted vector
based on the matrix commitment (i.e., without knowing M or ⇡). This is a consequence
of the fact that generalized Pedersen commitments are additively homomorphic. More
precisely, if ē0 2 ZN denotes the vector of integers obtained from ē 2 ZN by permuting its
values according to ⇡, then

hCom(M, r̄), ēi = Com(Mē, hr̄, ēi) = Com(ē0, r)

is a commitment of ē0 with randomization r = hr̄, ēi.

Homomorphic Encryptions. For a randomized asymmetric encryption scheme, such as
for example ElGamal or Paillier, we write u = Encpk(m, r) for encrypting a plaintext
m 2Mwith randomization r 2 R and public key pk into a ciphertext u 2 C. Let�,�, and
⌦ be respective group operations onM,R, and C. An encryption scheme is homomorphic,
if Encpk(m

1

, r
1

)⌦Encpk(m
2

, r
2

) = Encpk(m
1

�m
2

, r
1

� r
2

) for all m
1

, m
2

2M and
r
1

, r
2

2 R. A homomorphic encryption scheme allows a ciphertext u = Encpk(m, r) to be
re-encrypted with a new randomization r0. We write ReEncpk(u, r0) = u⌦Encpk(1, r0) =
Encpk(m, r � r0), where 1 2M denotes the identity element of the plaintext space.

Zero-Knowledge Proofs. A zero-knowledge proof of knowledge is an interactive pro-
tocol in which a prover P convinces a verifier V that P knows a value (private input)
satisfying a certain predicate (public input) without revealing any information about the
value. ⌃-proofs are zero-knowledge proofs of knowledge based on a three-message proto-
col: P passes a commitment t to V , V replies with a randomly chosen challenge c, and

1393

P sends a response s back to V . The triple (t, c, s) is called proof transcript, which V
either accepts or rejects. A large class of ⌃-proofs results from any group homomorphism
� : G ! H . Let � and ⌦ be respective operators of G and H . If x 2 G is the private input
known to P and y = �(x) 2 H the public input known to P and V , we write

⌃-proof
h

x | y = �(x)
i

for the ⌃-proof of knowing the preimage x. It can be constructed by the following standard
procedure: P picks r 2R G and sends t = �(r) to V , V replies with c 2R C ✓ Z, and P
sends the response s = r� xc back to V . V accepts the proof, if and only if �(s) = t⌦ yc.
This general construction of preimage ⌃-proofs covers many known proofs of knowledge
as special cases [Mau09]. It can be turned into a non-interactive proof by obtaining c from
a random oracle using (t, y) as query [FS86].2

2.2 Proof of a Shuffle

The shuffle proof according to Wikström and Terelius consists of an offline and an online
phase [Wik09, TW10]. In the offline phase, the mixer commits to a permutation matrix and
proves under zero knowledge that the commitment contains indeed a permutation matrix.
An upper bound for the size of the shuffle is required to conduct this phase prior to the
actual shuffling. Later, in the online phase, the mixer performs the shuffle according to
the committed permutation matrix and proves the correctness of the shuffle under zero
knowledge.

Offline Phase. Let ⇡ be a permutation of size N and c̄⇡ = Com(M, s̄) 2 GN
q a com-

mitment to the corresponding permutation matrix M . If x̄ = (x
1

, . . . , xN) is a vector of
N independent variables, then an N⇥N -matrix M over Zq is a permutation matrix if and
only if

QN
i=1

hm̄i, x̄i =
QN

i=1

xi and M 1̄ = 1̄. These properties allow to prove that c̄⇡ is a
commitment to a permutation matrix [TW10]:

⌃-proof

"

v, w 2 Zq

ē0 2 ZN
q

Com(1̄, v) = hc̄⇡, 1̄i ^ Com(ē0, w) = hc̄⇡, ēi ^
N
Y

i=1

e0
i =

N
Y

i=1

ei

#

,

where v = hs̄, 1̄i, w = hs̄, ēi, and ē0 = (e0
1

, . . . , e0
N) = (e⇡(1)

, . . . , e⇡(N)

) are the private
inputs. The vector ē = (e

1

, . . . , eN) 2 ZN
q is a public input selected and communicated

beforehand by the verifier.3 The last part of the proof, which consists in showing the
equality

QN
i=1

e0
i =

QN
i=1

ei, can be achieved using a recursive commitment structure
c
1

, . . . , cN with base case c
0

= h [Wik12]. This leads to a slightly different representation
2To establish a binding between prover and proof, the prover’s identity is sometimes adjoined to the random

oracle query.
3Usually, the values e

i

are selected from a subset [0, 2k

e � 1]N ✓ Z
q

, where k

e

is a security parameter.

1394

of the above proof:

⌃-proof

"

v, w, d 2 Zq

t̄, ē0 2 ZN
q

Com(1̄, v) = hc̄⇡, 1̄i ^ Com(ē0, w) = hc̄⇡, ēi ^
VN

i=1

(ci = gt
ic

e0
i

i�1

) ^ Com(0, d) = cN/h
∏

N

i=1 e
i

#

,

where t̄ = (t
1

, . . . , tN) 2R ZN
q and d = dN are additional private inputs for d

0

= 0 and
di = ti + e0i di�1

for i > 0. This leads directly a homomorphic one-way function,

�
o✏ine

(v, w, t̄, d, ē0) =
⇣

Com(1̄, v),Com(ē0, w), gt1c
e0
1

0

, . . . , gt
N c

e0
N

N�1

,Com(0, d)
⌘

,

which can be used for constructing a preimage proof by the standard procedure.

Online Phase. Let C denote the ciphertext space of the given homomorphic encryption
scheme. We assume that the largest cyclic subgroup of C is of the same order q as the cyclic
group used for the Pedersen commitments.4 The input list of ciphertexts is denoted by
ū = (u

1

, . . . , uN) 2 CN and the corresponding shuffled list of permuted and re-encrypted
ciphertexts by ū0 = (u0

1

, . . . , u0N) 2 CN . Again, a public vector ē 2 ZN
q is selected

and communicated beforehand by the verifier. A proof that ū0 has been formed correctly
by shuffling ū according to the committed permutation matrix c̄⇡ = Com(M, s̄) can be
constructed as follows [Wik09]:

⌃-proof

"

r, w 2 Zq

ē0 2 ZN
q

Com(ē0, w) = hc̄⇡, ēi ^
N
Y

i=1

(u0i)
e0

i =
N
Y

i=1

(ui)e
i

Enc(1, r)

#

,

where r = hr̄, ēi, w = hs̄, ēi, and ē0 = (e0
1

, . . . , e0N) = (e⇡(1)

, . . . , e⇡(N)

) are the private
inputs for r̄ = (r

1

, . . . , rN) 2R ZN
q and u0i = ReEnc(u⇡(i), r⇡(i)). Again, this implies a

homomorphic one-way function,

�
online

(r, w, ē0) =
⇣

Com(ē0, w),
QN

i=1

(u0i)
e0

i

Enc(1,�r)
⌘

,

for which a preimage proof can be constructed by the standard procedure.

3 Design and Implementation

Some selected details of our shuffle proof implementation are the focus of this section.
The goal is to make the reader familiar with the design and some basic concepts of our
implementation. For this, we give first some background information about UniCrypt, the
cryptographic library into which our shuffle proof is embedded. Then we discuss a complete
example of usage to illustrate the provided interface from a programmer’s perspective. The
chosen example covers the full process of generating and mixing some ElGamal encryptions
and constructing and verifying the offline and online proofs.

4For simplicity, we expect the same group order for the encryptions and commitments, but this is not a
necessary requirement for the proof.

1395

3.1 UniCrypt

UniCrypt is a Java library developed for the purpose of simplifying the implementation
of cryptographic voting protocols.5 It consists of two layers, one for the mathematical
fundament and one for the cryptographic primitives. The mathematical layer deals with
all sorts of algebraic structures, corresponding elements, and functions. Its purpose is to
provide strict type safety on a mathematical level: elements always “know” the algebraic
structure to which they belong, i.e., applying a group operator is only allowed for elements
of the group and evaluating a function is is only allowed for elements of the domain.

The cryptographic layer provides interfaces and implementations of various cryptographic
schemes: symmetric and asymmetric encryption, secret sharing, commitments, digital
signatures, zero-knowledge proofs, mix-nets, and more. It also contains a package for
generating pseudo-random numbers, common reference strings, or random oracles. In the
remaining paragraphs, we provide additional information to some of the cryptographic
components, which appear in the example of the following subsection. Corresponding
top-level Java interfaces exist in the UniCrypt library.

Mixer. This interface specifies the functionality of a pure cryptographic shuffle: an
input list of values is shuffled into an output list of values without proving its correctness.
Currently, two implementations of this interface are available: a re-encryption mixer, which
permutes and re-encrypts a list of ciphertexts of a homomorphic encryption scheme, and
a so-called identity mixer, which shuffles credentials according to the method described
in [HS11].

Proof System. This is the general interface for many different types of zero-knowledge
proofs. It specifies two principal methods, one for generating a proof for given private and
public inputs, and one for verifying such proofs. Multiple standard zero-knowledge proofs
of knowledge are implemented in a generic way. There are implementations for basic
preimage proofs, for conjunctive or disjunctive compositions of preimage proofs, and for
equality and inequality proofs. They can all be applied to any homomorphic function. There
are also implementations for validity proofs, which can deal with ElGamal encryptions and
Pedersen commitments. The online part of the shuffle proof is implemented in two different
ways, one for a re-encryption mixer and one for an identity mixer.

Challenge Generator. The proof system implementation in UniCrypt is very flexible
about constructing proofs in an interactive or non-interactive manner. The process of
creating the challenge is abstracted in our concept of a challenge generator. During
the construction or verification of a proof, the proof system simply calls the challenge
generator to get a suitable challenge. The details of selecting the challenge in a concrete
implementation are hidden behind the interface. The default implementations are non-
interactive, which obtain the challenge from calling a random oracle.

5The source code of the UniCrypt library is publicly available on GitHub under a dual AGPLv3/commercial
licence, see https://github.com/bfh-evg/unicrypt.

1396

3.2 Example of Usage

To present our shuffle proof implementation from a programmer’s point of view, we
present a complete example of a re-encryption shuffle including proving and verifying
the correctness of the shuffle. To keep the code as tight as possible, the example operates
often in a default manner. For example, the independent generators used in the generalized
Pedersen commitment are implicitly derived from the default common reference string, and
non-interactive challenge generators are created automatically by the proof systems.

Setup. We first create a list of ElGamal ciphertexts, which in a normal application is
given by the context. For this, we randomly select a cyclic group Gq ✓ Z⇤

p such that
p = 2q + 1 is a safe prime of a specified bit length. Then the ElGamal encryption scheme
is instantiated based on the default generator of the selected cyclic group, and a public key
pk is chosen at random (we don’t decrypt in this example, so no private key is needed).
Finally, the list ū of input ciphertexts is created based on random messages.

/ / Create c y c l i c group f o r random safe prime (1024 b i t s)

Cycl icGroup group = GStarModSafePrime . getRandomInstance (1024) ;

/ / Create ElGamal encryp t ion scheme and s e l e c t random p u b l i c key pk

ElGamalEncryptionScheme elGamal =

ElGamalEncryptionScheme . get Ins tance (group . getDefau l tGenera tor ()) ;

Element pk = group . getRandomElement () ;

/ / Set s h u f f l e s ize and create random ElGamal c i p h e r t e x t s

i n t n = 100;

Tuple c i p h e r t e x t s = Tuple . ge t Ins tance () ;

f o r (i n t i = 0 ; i < n ; i ++) {
Pai r c = elGamal . encrypt (pk , group . getRandomElement ()) ;

c i p h e r t e x t s = c i p h e r t e x t s . add (c) ;

}

Listing 1: Setup

Shuffle. To shuffle the list of input ciphertexts ū, a re-encryption mixer is instantiated
based on the ElGamal encryption scheme, the public key pk, and the shuffle size N . Then
permutation ⇡ and the re-encryption randomizations r̄ are selected at random. To be able
to proof the correctness of the shuffle later, it is important to create these values explicitly.
Finally, calling the shuffle method of the mixer outputs a list of ciphertexts ū0.

/ / Create mixer , a random permutat ion pi , and randomizat ions r

ReEncrypt ionMixer mixer = ReEncrypt ionMixer . ge t Ins tance (elGamal , pk , n) ;

Permutat ionElement p i = mixer . getPermutat ionGroup () . getRandomElement () ;

Tuple r = mixer . generateRandomizations () ;

/ / Shu f f l e c i p h e r t e x t s using p i and r

Tuple s h u f f l e d C i p h e r t e x t s = mixer . s h u f f l e (c i phe r tex t s , p i , r) ;

Listing 2: Shuffle

1397

Offline Phase. The first step in the offline phase of the shuffle proof is to generate the
permutation matrix commitment c̄⇡ relative to ⇡. For this, we instantiate a permutation
commitment scheme and select the commitment randomizations s̄ explicitly at random. To
prove that c̄⇡ is a commitment to a permutation, we instantiate a permutation commitment
proof system, which allows creating the proof using (⇡, s̄) as private and c̄⇡ as public input.
Note that the code of Listing 3 could be executed before the ciphertexts are shuffled in the
last line of Listing 2.

/ / Create permutat ion commitment c p i based on p i and randomizat ions s

PermutationCommitmentScheme pcs =

PermutationCommitmentScheme . get Ins tance (group , n) ;

Tuple s = pcs . getRandomizationSpace () . getRandomElement () ;

Tuple c p i = pcs . commit (p i , s) ;

/ / Create permutat ion commitment proo f system

PermutationCommitmentProofSystem pcps =

PermutationCommitmentProofSystem . get Ins tance (group , n) ;

/ / Def ine p r i v a t e and p u b l i c i npu ts

Pai r o f f l i n e P r i v a t e I n p u t = Pa i r . ge t Ins tance (pi , s) ;

Element o f f l i n e P u b l i c I n p u t = c p i ;

/ / Generate permutat ion commitment proo f

Pai r o f f l i n e P r o o f =

pcps . generate (o f f l i n e P r i v a t e I n p u t , o f f l i n e P u b l i c I n p u t) ;

Listing 3: Online Phase (Proof of Knowledge of Permutation Matrix)

Online Phase. Finally, the shuffle proof can be generated with the help of a re-encryption
shuffle proof system. The triples (⇡, s̄, r̄) and (c̄⇡, ū, ū0) are the private and public inputs,
respectively.

/ / Create s h u f f l e proo f system

ReEncrypt ionShuff leProofSystem rsps =

ReEncrypt ionShuff leProofSystem . get Ins tance (group , n , elGamal , pk) ;

/ / Def ine p r i v a t e and p u b l i c i npu ts

T r i p l e o n l i n e P r i v a t e I n p u t = T r i p l e . ge t Ins tance (pi , s , r) ;

T r i p l e o n l i n e P u b l i c I n p u t =

T r i p l e . ge t Ins tance (c p i , c i phe r tex t s , s h u f f l e d C i p h e r t e x t s) ;

/ / Generate s h u f f l e proo f

T r i p l e on l ineProo f = rsps . generate (o n l i n e P r i v a t e I n p u t , o n l i n e P u b l i c I n p u t) ;

Listing 4: Online Phase (Commitment Consistent Proof of a Shuffle)

Verification. The verification of the overall proof is straightforward: just call the veri-
fication methods of the proof systems with the corresponding proof and the public input
as arguments, and make sure that the same permutation commitment is included in both
public inputs. The proof systems are either given by the context or can be created based on
common values.

1398

/ / V e r i f y permutat ion commitment proo f

boolean v1 = pcps . v e r i f y (o f f l i n e P r o o f , o f f l i n e P u b l i c I n p u t) ;

/ / V e r i f y s h u f f l e proo f

boolean v2 = rsps . v e r i f y (on l ineProof , o n l i n e P u b l i c I n p u t) ;

/ / V e r i f y e q u a l i t y o f permutat ion commitments

boolean v3 =

o f f l i n e P u b l i c I n p u t . i s Eq u i v a l e n t (o n l i n e P u b l i c I n p u t . g e t F i r s t ()) ;

i f (v1 && v2 && v3) success () ;

Listing 5: Proof Verification

4 Conclusion

In this paper, we presented a short summary of the shuffle proof of Wikström and Terelius
and presented an overview of a new implementation embedded in a lightweight Java library.
With our example of shuffling a list of ElGamal ciphertexts, we illustrated the construction
of a shuffle proof from a programming perspective. It turns out that the using the library
is straightforward and intuitive. As a standalone library, it can be easily integrated in any
mix-net based electronic voting system.

The results of preliminary performance tests are comparable to the results reported in the
literature for other shuffle proof implementations (100,000 ElGamal ciphertexts within a
few minutes, for a residue class of 160/1024 bits and on a standard notebook). We expect
performance improvements by further optimizing the implementation (multi-exponentiation,
pre-computations, caching, etc.). The flexibility of our library with respect to working with
different groups—for example by using elliptic curves—can further speed up the proof
generation and verification without code modifications.

References

[BG12] S. Bayer and J. Groth. Efficient Zero-Knowledge Argument for Correctness of a
Shuffle. In D. Pointcheval and T. Johansson, editors, EUROCRYPT’12, 31st Annual
International Conference on Theory and Applications of Cryptographic Techniques,
LNCS 7237, pages 263–280, Cambridge, UK, 2012.

[BGP11] P. Bulens, D. Giry, and O. Pereira. Running Mixnet-Based Elections with Helios.
In H. Shacham and V. Teague, editors, EVT/WOTE’11, Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections, San Francisco, USA, 2011.

[FMM+02] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An Implementation of a
Universally Verifiable Electronic Voting Scheme based on Shuffling. In M. Blaze, editor,
FC’02, 6th International Conference on Financial Cryptography, LNCS 2357, pages
16–30, Southampton, Bermuda, 2002.

1399

[FMS10] J. Furukawa, K. Mori, and K. Sako. An Implementation of a Mix-Net Based Network
Voting Scheme and Its Use in a Private Organization. In D. Chaum, M. Jakobsson,
R. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kutylowski, and B. Adida, editors, Towards
Trustworthy Elections, LNCS 6000, pages 141–154. Springer, 2010.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In A. M. Odlyzko, editor, CRYPTO’86, 6th Annual International
Cryptology Conference on Advances in Cryptology, pages 186–194, 1986.

[FS01] J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle. In J. Kilian,
editor, CRYPTO’01, 21st Annual International Cryptology Conference on Advances in
Cryptology, LNCS 2139, pages 368–387, Santa Barbara, USA, 2001.

[GI08] J. Groth and Y. Ishai. Sub-Linear Zero-Knowledge Argument for Correctness of a
Shuffle. In N. Smart, editor, EUROCRYPT’08, 27th International Conference on the
Theory and Applications of Cryptographic Techniques, LNCS 4965, pages 379–396,
Istanbul, Turkey, 2008.

[Gro10] J. Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. Journal of Cryptol-
ogy, 23(4):546–579, 2010.

[HS11] R. Haenni and O. Spycher. Secure Internet Voting on Limited Devices with Anonymized
DSA Public Keys. In H. Shacham and V. Teague, editors, EVT/WOTE’11, Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections, 2011.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic Elections. In
V. Atluri, S. De Capitani di Vimercati, and R. Dingledine, editors, WPES’05, 4th ACM
Workshop on Privacy in the Electronic Society, pages 61–70, Alexandria, USA, 2005.

[Joa14] R. Joaquim. How to Prove the Validity of a Complex Ballot Encryption to the Voter and
the Public. Journal of Information Security and Applications, accepted, 2014.

[Mau09] U. Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In B. Preneel, editor,
AFRICACRYPT’09, 2nd International Conference on Cryptology in Africa, volume 5580
of LNCS 5580, pages 272–286, Gammarth, Tunisia, 2009.

[Nef01] C. A. Neff. A Verifiable Secret Shuffle and its Application to E-Voting. In P. Samarati,
editor, CCS’01, 8th ACM Conference on Computer and Communications Security, pages
116–125, Philadelphia, USA, 2001.

[RBH+09] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and X. Zhe. Prêt à Voter: a Voter-
Verifiable Voting System. IEEE Transactions on Information Forensics and Security,
4(4):662–673, 2009.

[TW10] B. Terelius and D. Wikström. Proofs of Restricted Shuffles. In D. J. Bernstein and
T. Lange, editors, AFRICACRYPT’10, 3rd International Conference on Cryptology in
Africa, LNCS 6055, pages 100–113, Stellenbosch, South Africa, 2010.

[Wik09] D. Wikström. A Commitment-Consistent Proof of a Shuffle. In C. Boyd and J. González
Nieto, editors, ACISP’09, 14th Australasian Conference on Information Security and
Privacy, LNCS 5594, pages 407–421, Brisbane, Australia, 2009.

[Wik12] D. Wikström. How to Implement a Stand-alone Verifier for the Verificatum Mix-Net.
Verificatum AB, Stockholm, Sweden, 2012.

[Wik13] D. Wikström. User Manual for the Verificatum Mix-Net Version 1.2.0. Verificatum AB,
Stockholm, Sweden, 2013.

1400

