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Abstract

During this master’s thesis, a decentralized e-voting system for mobile devices such as
smartphones and tablets running Android has been implemented. The term “decentralized”
in that context means that there is no central server infrastructure involved in the voting
process. The main application of such e-voting systems are votes with a low number
of participants, for example the board of directors in a company. The idea is that the
participants create an ad-hoc network with their mobile devices and then use this network
to run a secure e-voting protocol. In order to guarantee privacy and verifiability, a voting
scheme that uses homomorphic tallying is used. It also provides robustness in the sense
that it is not possible for a single party to break the voting process just by refusing the
collaboration at a certain step throughout the voting process. A big focus area is also the
usability of this system, it should be possible for participants without extensive knowledge
in the area of information security to use this e-voting system.
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1 Introduction

1 Introduction

The history of voting on a particular question in order to determine the will of a group of
people goes far back to the ancient Greeks, who laid the groundwork of today’s democratic
societies. Over the years, the purpose of holding elections remained the same, while the
procedures on how voting is done has changed significantly. The most ancient way of
expressing the will by a hand sign has been replaced by modern technologies. The 20th
century has seen a lot of changes in this area. Paper based voting has been introduced,
and with the industrialization, the first voting machines appeared on the surface. The
purpose of these machines was to simplify the counting process. In today’s internet society
where a lot of tasks such as banking, shopping, mailing, etc. have been revolutionized by
the internet, it is not surprising that there are a lot of efforts going on to revolutionize
the process of voting as well.

One of the research fields of the Bern University of Applied Sciences is the area of
electronic voting, hereinafter abbreviated as e-voting. E-voting has become a big field of
research in the past couple years. Still, there is no generic approach which meets all the
criteria such as privacy, transparency, etc. which we want in e-voting. These properties
are discussed in Section 2.1 on page 5. The e-voting research group of the Bern University
of Applied Sciences1 tries to improve this situation with the following approaches:

• Contribute to the scientific community in the area of e-voting by publishing new
approaches.

• Take existing approaches and evaluate them in terms of practicability. These
approaches are usually available as scientific papers.

The evaluation of these approaches is usually done by implementing them into a
prototype level application. This implementation is used to show that the approach works
in practice and provides a certain usability. The E-Voting Group would like to gain some
experience on how decentralized e-voting systems could be implemented and how they
behave in practice. A decentralized e-voting system aims to provide a platform to do
secure e-voting without the need of having a central infrastructure (e.g. a server) available.
There are some approaches which focus explicitly on this kind of e-voting systems, such

1http://e-voting.bfh.ch/
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1 Introduction

as the proposal of D. Khader et al. [10]. In this project however, we would like to adapt
the voting scheme proposed by Cramer et. al. [3] in a way that it can be used as a
decentralized e-voting system.

A potential use case of such a system could be boardroom voting, for example a vote
held in a board of directors of a company. The architecture of our system requires
that all the participants are in a confined space and are able to exchange some sort of
credential using a communication channel which relies on physical proximity (e.g. near
field communication) or visual contact (e.g. QR-codes).

In previous projects during the master studies, some groundwork has been implemented
which can now be used as a foundation for this project. The previously implemented
projects are the following:

• UniCrypt: UniCrypt is a cryptographic library developed by the members of the E-
Voting Group of the Bern University of Applied Sciences. It provides cryptographic
building blocks such as the ElGamal cryptosystem, zero knowledge proofs, digital
signatures, etc.

• InstaCircle: InstaCircle provides a decentralized communication platform for
Android devices. It allows to exchange messages using Wi-Fi communication among
a closed user group.

The projects mentioned above will be discussed in more detail in Chapter 2 on page 5.

1.1 Goals

The final result of this project is a fully-fledged decentralized e-voting application which
runs on Android devices and does not require any equipment other than the Android
smartphones or tablets. The CGS97 e-voting scheme [3] will be used as the theoretical
foundation for this project. Having said this, we divide the following goals for this project:

E-Voting Functionality. The main goal of this project is the implementation of
the logic of CGS97 [3], by assembling the cryptographic building blocks to a working
application. The final product needs to be able to handle a voting scenario one-out-of-k,
meaning that a user can choose exactly one out of k options.

Graphical User Interface. In many cases, cryptographic functions which are heavily
used in the context of e-voting have a negative impact on the usability. Many steps such
as key generation, decryption, etc. have to be done in order to guarantee all the desired

2



1 Introduction

properties for e-voting. All these steps bring a certain complexity into the handling of
the application. Therefore it is crucial to guide the user through the process, and this
can only be done by providing them a carefully crafted user interface. A further goal of
this project is to implement a user interface which provides a good usability.

Extension of UniCrypt. UniCrypt implements many cryptographic building blocks
which are necessary in order to implement a CGS97 based e-voting system, however two
crucial parts are missing:

• ElGamal Proof of Validity: This type of zero-knowledge proof is used in order to
make sure that a cipher text is an ElGamal encryption of an element which belongs
to a set of possible plain texts. This type of proof is an instance of a more generic
OR-composition of multiple proofs of knowledge. This type of zero-knowledge proof
is discussed in detail in Section 2.2.5 on page 11.

• Threshold Cryptosystem: In order to ensure privacy of the ballots, the CGS97
e-voting scheme uses a so called threshold system. This system allows to split a
private key and distribute key shares to a given set of participants. In order to
decrypt a cipher text, the parties have to collaborate in order to reconstruct the
private key. Threshold cryptosystems are discussed in further detail in Section 2.2.4
on page 9.

As a goal of this project, these two essential building blocks have to be implemented
and integrated into the UniCrypt library.

The time budget of this master’s thesis is one year, although the project will be
implemented part time. It is equivalent to 27 ECTS credits.

1.2 Contribution

Currently there are a couple of Android apps available in the Google Play store2 which
allow to do simple votes, or else they are clients of e-voting systems of a specific organisation.
A decentralized e-voting system which offers the cryptographic level of this project is
currently not available. The implementation and the evaluation of this project will help to
understand further strong and weak points of the CGS97 e-voting scheme, especially when
using it in a decentralized configuration. So far, the E-Voting Group of the Bern University
of Applied Sciences has gained expertise by implementing and operating e-voting systems

2http://play.google.com/
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1 Introduction

on centralized systems which are usually operated on notebooks or desktop computers.
This project will help gaining some experience in how e-voting systems can be used on
mobile devices.

Furthermore, the extensions for the UniCrypt library can be used for other projects as
well. In the area of e-voting, threshold cryptosystems and validity proofs are considered
being standard building blocks and can be used for the implementation of other e-voting
schemes.

1.3 Outline

Chapter 2 on the following page gives an overview of the work on which this project has
been based on. The cryptographic building blocks which we use are discussed, as well
as the e-voting scheme on which this work is based on. We also discuss projects which
have been implemented as a preparation of this master’s thesis. The project setup and
the administrative aspects are covered in Chapter 3 on page 26. Chapter 4 on page 30
explains the resulting implementation in detail. Chapter 5 on page 52 reflects on the work
which has been done, before ending the document with a conclusion that summarizes
the achievements (see Chapter 6 on page 58). A handbook of the product which has
been implemented during this project can be found in the Appendix (see Appendix A on
page 63).

4



2 Background and Related Work

2 Background and Related Work

This section gives an overview of the theoretical foundations and some projects which
have been implemented earlier in order to serve as a foundation for this project.

2.1 E-Voting in 2014

Electronic voting has been a field of research ever since the internet revolutionized many
areas of our daily life. Nevertheless, only few governments have made e-voting publicly
available for their citizens. Some countries, among them Switzerland, are putting high
efforts into officially introduce e-voting as an official way of voting, along with paper
based voting. The reason why the introduction of e-voting takes much more time than
for example e-banking stems from the fact that e-voting requires some properties which
are not easy to implement. What follows is a non-exhaustive list of these properties.

Democracy: Only eligible voters can vote, and each voter can cast at most one ballot
which will be included in the result.

Accuracy: The result is derived from all valid votes as they were cast, i.e. cast votes
cannot be modified. No other factors than valid votes can influence the result.

Universal verifiability: Anybody, even people who are not involved in the voting
process, can verify the correctness of the result.

Individual verifiability: A voter can verify that her vote is included in the result as
she cast it.

Privacy: The e-voting system does not reveal any information about what option the
voter has chosen.

Receipt-freeness: The voter cannot prove to anybody else how she voted.

Coercion-resistance: The voter cannot be coerced, meaning it is not possible to force
a voter to vote in a particular way, or prevent a voter to vote at all.

5



2 Background and Related Work

Robustness: An attacker or a small colluding set of the electorate is not able to disrupt
an election process or change the outcome by damaging a small set of system
components.

All these properties are discussed in detail in [6] and [9]. The currently ongoing research
efforts are put into developing approaches how e-voting systems that meet all these
requirements could be built. Many of the properties mentioned above can be achieved
by employing cryptographic building blocks, which are discussed in the next section.
The robustness property is probably the biggest factor that prevents the breakthrough
of e-voting on large scales. E-voting systems are the perfect targets for an intended
manipulation or a boycott of an election. That is the reason why e-voting is currently
used only on small scales. The size of the electorate is limited so that it is statistically
unlikely to tip the scale to one side or the other.

2.2 Cryptographic Building Blocks

The voting scheme that is used in this project is assembled from some well known
cryptographic building blocks which are briefly explained in this section. All these
cryptographic building blocks belong to the area of asymmetric cryptography, which is
usually based on a key pair, containing a public key and a private key.

2.2.1 Discrete Logarithm Problem

Asymmetric cryptography relies on a mathematical problem, which is nowadays considered
to be hard to solve, meaning that so far there is no known algorithm to find a solution
for a given problem efficiently. An example of such a problem is the prime factorization
of large numbers on which the security of the famous RSA cryptosystem [16] is based on.
The other hard problem of this kind is known as the Discrete Logarithm Problem. The
formal definition of the problem is as follows:

Given a prime p, a generator g of a multiplicative modular group Z⇤
p

and an element
b 2 Z⇤

p

, find the integer x, 0  x  p� 2, such that gx ⌘ b mod p.
Currently there is no efficient way of solving this equation in an efficient manner. There

are some more sophisticated approaches than the naive way of iterating over all elements
of the group, for example the baby-step giant-step algorithm1, but it is still not possible
to find a solution in polynomial time with respect to the order of the group. The security
of most of the building blocks which are used in this project is based on this problem.

1http://en.wikipedia.org/wiki/Baby-step_giant-step
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2 Background and Related Work

Further information concerning the discrete logarithm problem can be found in Chapter
3 of the Handbook of Applied Cryptography by A. Menezes et. al. [12].

2.2.2 ElGamal Cryptosystem

The ElGamal cryptosystem [4], proposed by T. El Gamal in 1984, is the asymmetric
cryptosystem which is mostly used in the context of e-voting. An asymmetric cryptosystem
uses two keys to operate, one which is used to encrypt a certain message (the public key)
and another to decrypt the message (the private key). The security of this cryptosystem
is based on the fact that it is hard to compute the logarithm in discrete modular groups
and hence making the exponentiation in modular groups a one way function. A major
advantage of the ElGamal cryptosystem is the fact, that the encryption function includes
a random value. Especially in the context of e-voting this is a crucial property, because
when encrypting a value (for example the value 1 which means yes) multiple times using
the same public key, the resulting cipher text is always different. That is why ElGamal is
also called a randomized cryptosystem.

In order to define an ElGamal cryptosystem, three parameters are required. Let p
and q be large prime numbers such that q|p� 1.2 The prime number q defines the order
of a subgroup G

q

of the multiplicative modular group Z⇤
p

. Z
q

is an additive modular
group of order q. The last parameter needed is an arbitrarily chosen generator g of the
group G

q

. Further information concerning group theory can be found in Chapter 2 of
the Handbook of Applied Cryptography by Alfred Menezes et. al. [12]. We can now
derive the asymmetric key pair containing the private key x 2

R

Z
q

and the public key
y = gx 2 G

q

. A message m 2 G
q

can be encrypted by first choosing a random value
r 2

R

Z
q

, and then applying the following function:

Enc
y

: G
q

⇥ Z
q

! G
q

⇥G
q

, (a, b) = Enc
y

(m, r) = (gr, yr ·m)

The tuple (a, b) is the cipher text of the message m. m can be recovered using the private
key x by applying the decryption function:

Dec
x

: G
q

⇥G
q

! G
q

,m = Dec
x

(a, b) = a�x · b

Exponential ElGamal

In the area of e-voting, we often find a slight variation of ElGamal which is called
exponential ElGamal. In exponential ElGamal, we encode a message m̂ by using a

2In the case of p = 2q+1 where p and q are primes, p is called safe prime and q is called Sophie Germain

prime.
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generator ĝ of G
q

and raise it to the power of the message m̂ 2 Z
q

. In many cases,
the ElGamal parameter g is used as ĝ, which makes it unnecessary to define a fourth
predefined parameter. Note that the message m̂ is an element of the additive group Z

q

as
opposed to the classical ElGamal where m is an element of the multiplicative group G

q

.
The modified encryption function of exponential ElGamal looks as follows:

ˆEnc
y

: Z
q

⇥ Z
q

! G
q

⇥G
q

, (a, b) = ˆEnc
y

(m̂, r) = (gr, yr · ĝm̂)

In order to decrypt a given cipher text, we apply the ordinary ElGamal decryption
function and obtain the value ĝm̂ 2 G

q

. To reveal m̂, we would have to compute the
discrete logarithm, which is a hard problem in general. If we have knowledge about all
the possible plain texts (e.g. we know that a ballot either contains 0 for no or 1 for yes),
we can just try all possible plain texts.

Exponential ElGamal has another property which is important in the context of e-voting:
It transforms the right part of the ElGamal encryption function from a multiplicative
homomorphic function into an additive homomorphic function. Homomorphic encryption
is discussed in detail in Section 2.2.3.

2.2.3 Homomorphic encryption

The ElGamal cryptosystem has a property which is important for building verifiable
e-voting schemes, namely the property of homomorphism. Given two mathematical groups
(X,�) and (Y,⌦), a mathematical function f : X ! Y is (�,⌦)-homomorphic if the
following condition holds:

f(m1)⌦ f(m2) = f(m1 �m2)

The ElGamal function offers exactly that property for its encryption function Enc
y

:

G
q

⇥ Z
q

! G
q

⇥G
q

using the same public key y:

Enc
y

(m1, r1) · Enc
y

(m2, r2) = Enc
y

(m1 ·m2, r1 + r2)

This property allows to calculate the encrypted product of all messages out of the
encrypted messages and decrypt only the result. Applied to e-voting, the result can be
computed out of the encrypted ballots and only the final result needs to be decrypted.
The ballots themselves can remain encrypted, which is important for maintaining privacy.
The ElGamal cryptosystem is homomorphic respective to the multiplication operation
in the message part, which is not very fortunate for counting votes. Votes should be
summed up in order to get the final result. In order to reach this, we use the following
mathematical property:

xa · xb = xa+b

8
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This is exactly the property that we obtain by using exponential ElGamal as discussed
in Section 2.2.2 on page 7. The product of all cipher text values results in the encrypted
sum of the cast ballots, encrypted using the exponential ElGamal encryption function
ˆEnc

y

: Z
q

⇥ Z
q

! G
q

⇥G
q

:

ˆEnc
y

(m1, r1) · ˆEnc
y

(m2, r2) = ˆEnc
y

(m1 +m2, r1 + r2)

After decrypting the product of all cipher texts, we end up with a value of the form
ĝ(m1+m2). The value that we are interested in is m1 +m2. This value can be obtained by
computing the discrete logarithm, but we have seen in Section 2.2.1 on page 6 that this is
a hard problem. In the context of e-voting, we can solve this problem by iterating over
all possible solutions and compare it with the decrypted value. The number of possible
solutions cannot be bigger than the number of cast ballots, therefore iterating over these
solutions is not a big problem.

2.2.4 Secret sharing

In e-voting scenarios it is crucial that not a single entity can manipulate the result or
reveal single votes. This responsibility, or in our case the private key which is needed to
obtain the final result, has to be spread across a set of so called trustees. In the CGS97
scheme, this property is achieved by using a secret sharing mechanism as proposed by
A. Shamir in 1979 [18]. This scheme even allows to define a so called threshold, which
defines the minimal amount of participating trustees in order to decrypt the result. Such
a system is also known as a (t � n)-threshold scheme, where n defines the number of
shares which are issued at the beginning and t defines the minimal number of shares
needed to recover the secret. Equal to the ElGamal cryptosystem, we need two large
primes p and p such that q|p� 1. The prime number q defines the order of a subgroup
G

q

of the multiplicative modular group Z⇤
p

. Z
q

is an additive modular group of order q.
Having defined these prerequisites, a secret can be shared as follows:

1. A trusted dealer chooses a polynomial f(z) 2 Z
q

(z) with uniformly random chosen
coefficients f0, . . . , ft�1. If the secret x 2 Z

q

has been defined earlier, the coefficient
of degree 0 has to be equal to x.

2. The trusted dealer calculates a share x
i

= f(i) for i = 1, . . . , n.

3. The trusted dealer secretly communicates the share x
i

to each individual trustee.

The secret itself, at this stage only known by the trusted dealer, is defined by x = f(0).
In order to reproduce the secret using the shares distributed among all trustees, we

9
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can use an interpolation technique such as Lagrange interpolation, which allows us to
reproduce the secret f(0). Since a polynomial function of degree t� 1 is defined by at
least t points, the secret can only be reproduced if at least t trustees are collaborating
and contribute their shares.

The approach of Shamir is quite simple, but has one major drawback though: It requires
a trusted dealer which has the knowledge of the secret. It it would be nice to have a
scheme where the group of trustees collaborate to create the shares in a way that nobody
can derive the secret unless a sufficient amount of trustees collaborate. In 1991, T. P.
Pedersen proposed a scheme [13] where this trusted dealer is no longer required. In order
to jointly generate a secret, the trustees perform the following steps:

1. All trustees ⌧
i

for i = 1, . . . , n choose a polynomial f
i

(z) 2 Z
q

(z) for i = 1, . . . , n
with uniformly random chosen coefficients f

i0, . . . , fi,t�1.

2. All trustees commit themselves to their chosen coefficients by publishing the values
F
ij

= gfij for j = 0, . . . , t� 1.

3. All trustees generate a secret x
ij

= f
i

(j) for each trustee ⌧
j

, j = 1, . . . , n and send
it through a secure channel to ⌧

j

.

4. All trustees verify that the received shares are consistent with the previously
published coefficient commitments by verifying that the following equation holds:

gxji ?
=

t�1Y

l=0

F i

l

jl

If this verification fails, ⌧
i

broadcasts a message that there was a problem, publishes
the malicious share x

ji

, and stops the protocol.

5. All trustees with correct shares can now compute their share x
i

by computing
x
i

=

P
n

j=1 sji.

6. The public key y can be computed by calculating y =

P
n

j=1 Fj0.

The public key y can now be used by anybody, for example to do an ElGamal encryption.
In order to decrypt an ElGamal cipher text (a, b) created using the public key y, at least
t trustees have to collaborate and execute the following steps:

1. Each collaborating trustee ⌧
i

publishes a part decryption w
i

= asj

10
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2. Along with the part decryption w
i

, each trustee has to publish a proof that testifies
the following relation:

log

g

gxi
= log

a

w
i

This proves that the trustee ⌧
i

indeed used its key share to do the part decryption.
Further details about zero-knowledge proofs can be found in Section 2.2.5.

As soon as at least t part decryptions are publicly available, anyone can use the Lagrange
interpolation algorithm to recover the plain text. Let ⇤ be a set of at least t available
shares. Using this set, the Lagrange coefficients can be calculated as follows:

�
j,⇤ =

Y

l2⇤\{j}

l

l � j

The plain text m of the ElGamal cipher text (a, b) can then be recovered as follows:

m =

b
Q

j2⇤w
�j,⇤

j

Note that a set of at least t trustees could recover the secret x just by running an
interpolation algorithm. If f(z) is the function recovered by interpolation, the secret x
can be found by calculating x = f(0). Recovering the secret is not desirable in the CGS97
voting scheme though, because a reunited secret key could be used to violate the privacy
of the voters.

2.2.5 Zero-knowledge proofs

Zero-knowledge proofs (ZKPs) in their sense are conversations between a prover and a
verifier. They allow the prover to demonstrate, that she knows a secret without actually
revealing the secret itself. The conversation is similar to a challenge-response protocol.
The verifier asks the prover certain questions about the secret and the verifier answers
them. This kind of conversations are also known as ⌃-protocols. Of course, the prover
could just guess the correct answer to the question and cheat, but if the verifier repeats
the challenge process with a different input, chances are almost zero that the prover
can guess all the correct answers if she is not in fact in possession of the secret. Zero-
knowledge proofs offer therefore a probabilistic security. In the context of e-voting, these
zero-knowledge proofs are used to make sure that none of the participants are cheating.
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Non-interactive zero-knowledge proofs

Zero-knowledge proofs as described earlier are interactive conversations between a prover
and a verifier. This also means that the prover proves only to the verifier that she has
knowledge of the secret. Of course, any observer could observe the conversation, but
there is no way to determine whether the verifier actually accepts the the proof or not.
The verifier could of course testify that the prover has the knowledge of the secret, but
that would require a trust relationship between the observer and the verifier. In an
e-voting scenario, we need a proof which can be verified by anybody and does not require
an interactive conversation between the verifier and the prover. Such proofs are called
non-interactive zero-knowledge proofs or NIZKPs. The foundations of these NIZKPs were
introduced by A. Fiat and A. Shamir in 1986 [5], later known as the Fiat-Shamir heuristic.
Instead of the verifier challenging the prover, the prover challenges himself by using a
hash function such as SHA-256. As input for this hash function, publicly known values
are used. A verifier can use these publicly known values later to verify that the challenge
was created correctly. The result of such a non-interactive zero-knowledge proof is similar
to a digital signature. Once published, everybody can verify the integrity of the data over
which the signature has been calculated. In a similar way, non-interactive zero-knowledge
proofs can be verified, with the important difference that the secret of course remains
secret. So far, we did not specify what a secret actually is. There are multiple types of
secrets and therefore also multiple types of zero-knowledge proofs, but due to the work of
U. Maurer [11], we can formulate a general recipe how such a NIZKP is assembled:

Let (X,�) and (Y,⌦) be two mathematical groups and f : X ! Y be a one-way
homomorphic function. The prover wants to prove that she knows the preimage ↵ 2 X
of the publicly known value � 2 Y , where � = f(↵). In order to prove the knowledge of
the value ↵, the prover performs the following steps:

1. Choose a uniformly random value ! 2
R

X

2. Compute t = f(!)

3. Compute c = H(�||t), where H represents a hash function such as SHA-256

4. Compute s = ! � c · ↵

5. Publish the proof ⇡ = (t, s)

A verifier can now calculate c = H(�||t) and check whether the following condition
holds:

f(s)
?
= t⌦ �c
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In the following paragraphs, the different types of proofs used in this project are briefly
explained and adapted to the generalized scheme explained before.

Proving the Knowledge of Discrete Logarithm

This type of proof was first presented by C. P. Schnorr in 1991 [17]. We have seen that
the ElGamal encryption function has the homomorphic property (see Section 2.2.3 on
page 8). Therefore, it is possible to prove the knowledge of the plain text of a given cipher
text by applying the scheme above. We define the ElGamal encryption function using the
public key y and the predefined generator g of the group G

q

as follows:

Enc
y

: G
q

⇥ Z
q

! G
q

⇥G
q

, (a, b) = Enc
y

(m, r) = (gr, yr ·m)

Since g and y are publicly known values, the knowledge of the value r implies the
knowledge of m, therefore the prover only needs to prove the knowledge of r, which can
be done by substituting the following variables in the generic scheme above:

X = Z
q

Y = G
q

↵ = r

� = a

f(x) = gx

This translates to the following steps:

1. Choose a uniformly random value ! 2
R

Z
q

2. Compute t = g!

3. Compute c = H(a||t), where H represents a hash function such as SHA-256

4. Compute s = ! + c · r

5. Publish the proof ⇡ = (t, s)

A verifier can now verify the knowledge of r and therefore m by calculating c = H(a||t)
and check whether the following condition holds:

gs
?
= t · ac

13



2 Background and Related Work

Proving the Equality of Discrete Logarithms

This type of proof due to D. Chaum and T. P. Pedersen [2] proves the relation log
g1c1 =

log
g2c2 for two values c1 = gm1 and c2 = gm2 , where g1 and g2 are generators of the

mathematical group G
q

. In order to prove this relation, we can again substitute the
variables in the scheme above:

X = Z
q

Y = G
q

⇥G
q

↵ = m

� = (c1, c2)

f(x) = (gx1 , g
x

2 )

This translates to the following steps:

1. Choose a uniformly random value ! 2
R

Z
q

2. Compute t = (g!1 , g
!

2 )

3. Compute c = H(c1||c2||t), where H represents a hash function such as SHA-256

4. Compute s = ! + c ·m

5. Publish the proof ⇡ = (t, s)

A verifier can now verify the relation by calculating c = H(c1||c2||t) and check whether
the following condition holds:

(gs1, g
s

2)
?
= t · (c1, c2)c

Proving Validity

Proofs of validity are used to prove that a certain image of a homomorphic one way
function is in fact the image of a preimage, and the preimage is an element of a set of
possible preimages. The proof however does not reveal which preimage it actually is. This
type of proof is not a straight forward application of the generalized scheme of Maurer
[11], it is rather an OR-composition of several zero-knowledge proofs of knowledge. The
idea is to simulate accepting conversations for the preimages which do not correspond to
the calculated image and combine those simulated proofs with the actual proof from the
image we calculated.
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Let (X,�) and (Y,⌦) be two mathematical groups, f : X ! Y be a one-way homomor-
phic function and A = {↵1, . . . ,↵n

} ✓ X be a set of n possible preimages. The prover
wants to prove that the publicly known image � = f(↵

i

) 2 Y belongs to a preimage ↵
i

without revealing which preimage it actually is.

Value Precomputation. In this phase, we need to compute a specially crafted image
for all the possible preimages without the preimage for which the proof is being created.
This can be done by executing the following step:

1. Compute �
j

= � · ↵�1
j

for j = (1, ..., n).

Proof Generation. Now the proof can be created using the values b
j

created in the
precomputation phase, the chosen preimage a

i

and the index i.

1. Select challenges (c1, . . . , ci�1, ci+1, . . . , cn) 2R

Xn�1

2. Select responses (s1, . . . , si�1, si+1, . . . , sn) 2R

Xn�1

3. Compute commitments t
j

= f(s
j

) · ��cj

j

2 Y for j = (1, . . . , i� 1, i+ 1, . . . , n)

4. Select !
i

2
R

X

5. Compute t
i

= f(!
i

) 2 Y

6. Compute challenge c 2 X with hash function3 H: c = H(�1|| . . . ||�n||t1|| . . . ||tn)

7. Compute c
i

= c� (

P
n

j=1,j 6=i

c
j

)

�1 2 X

8. Compute s
i

= !
i

� c
i

· ↵ 2 X

9. Publish the proof ⇡ = (t1, . . . , tn, c1, . . . , cn, s1, . . . , sn)

Verification. The verification step needs the same precomputation for all the values
�
j

. The proof itself can be verified checking that the following conditions hold:

f(s
j

)

?
= t

j

· �cj

j

for j = (1...n)
nX

j=1,

c
j

?
= H(�1|| . . . ||�n||t1|| . . . ||tn)

3Usually a hash function such as SHA-256 is used, which does not necessary produce an element of X.
Some sort of mapping is required.
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The formal description above depicts how a general OR-proof is assembled. The cryp-
tographic building block we need for our implementation is a proof of validity, which
proves that the plain text m of a certain ElGamal cipher text (a, b) is an element of a set
of possible plain texts M = {m1, . . . ,mn

}. This scenario can be seen as an instance of
an OR-proof. We can show this relation by substituting the variables in the generalized
schema above as follows:

X = Z
q

Y = G
q

⇥G
q

↵ = r

� = (a, b)

f(x) = (gx, yx)

Note that as a function f(x), we use the identity function of ElGamal, which encrypts
the identity element of the domain (in the case of the multiplicative cyclic group G

q

, the
identity element is 1).

2.2.6 Bulletin Board

The so called bulletin board is the public communication channel which is used to com-
municate between the participants of the vote. It is a transcript of all the communication
steps between the participants and therefore contains encrypted ballots, zero knowledge
proofs, etc. The bulletin board is also available for observers. Using the content of the
bulletin board, everybody can verify that all the participants are following the protocol or
that dishonest participants are excluded from the voting process. A voter can verify that
his/her own ballot is counted properly and also reflects in the final result. In theory, it is
not possible to delete anything from a bulletin board (append only). There are several
approaches on how to create such an append-only bulletin board. The CGS97 protocol
itself only assumes this append-only property. Append-only bulletin boards are discussed
in more detail in [8]. Since the bulletin board is a good target for a denial-of-service
attack, it is a good idea to replicate the content of the bulletin board to multiple systems.

2.3 The Voting Scheme CGS97

In 1997, R. Cramer, R. Gennaro and B. Schoenmakers proposed a scheme [3] which allows
to do e-voting in a secure and verifiable manner. The participants of the protocol can be
divided into four different roles:
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• Administrator: The administrator is responsible for setting up the election by
defining the question and the possible options, the electorate and the voting period.
The administrator is also responsible for orchestrating the activities during a voting
cycle.

• Voter: A voter is somebody who is eligible to participate on a vote.

• Trustee: A trustee is somebody who helps setting up the election by creating an
asymmetric key pair in cooperation with other trustees. At the end of the voting
phase, the trustees have to cooperate in order to reveal the result of the vote.

• Observer: An observer is somebody who wants to verify that all the voters and
trustees of a voting cycle behave as they are supposed to.

In the case of a decentralized voting system, the voter, trustee and observer roles can
be combined and all participants impersonate these roles. The administrator role needs
to be assigned to one particular participant.

2.3.1 The Protocol

The CGS97 voting scheme has a well defined procedure on how a vote should be performed.
This procedure is explained in this section. Formally we define the set of n trustees
as T = {⌧1, . . . , ⌧n} and the set of l voters as V = {v1, . . . , v

l

}. Furthermore, the role
of an administrator A needs to be assigned to a participant. The process of these role
assignments strongly depends on the political structure of the organisation which runs
the vote and is considered to be an administrative task and is hence not further discussed
at this point. The procedure how a vote is performed looks as follows:

Initialization Phase. All the parties need to agree on the ElGamal parameters p, q,
and g. These parameters can be seen as fixed parameters and do not need to be redefined
for each vote. Further details regarding these parameters can be found in Section 2.2.2
on page 7. Furthermore, the administrator A defines the question and all the possible
options of the upcoming vote.

Key Generation Phase. All the trustees execute a robust threshold key generation
protocol as discussed in Section 2.2.4 on page 9. At this stage, a threshold t  |T | must
be defined. This parameter defines the minimal number of trustees which are required
to collaborate in order to decrypt the final result in the tallying phase. The transcript
of the key generation protocol is posted on the bulletin board (see Section 2.2.6 on the
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preceding page). The outcome of this key generation protocol is an ElGamal public key y
which needs to be communicated to all the voters.

Voting Phase. During a well defined time window, the voters can now create and cast
a ballot. To do so, the voters encrypt their ballots using the public key y and post them
to the bulletin board. Note that we need to use exponential ElGamal (see Section 2.2.2
on page 7) so that we can add the result in an upcoming stage. Furthermore, each voter
needs to post a proof of validity (see Section 2.2.5 on page 14) on the bulletin board in
order to prove that the encrypted ballot indeed contains a valid option of the election.

Tallying Phase. The tallying phase can start as soon as the voting period has come
to an end. In order to tally a vote, the cipher texts of the valid ballots are multiplied
and posted to the bulletin board. Since all the encrypted ballots are publicly available,
this multiplication step can be verified easily by doing the multiplication individually
and compare the result to the values on the bulletin board. The product of all the valid
ballots now represents the encrypted result of the vote. This result has to be decrypted
by the trustees. The trustees execute a threshold decryption protocol in order to reveal
the result of the election. Note that we only need a subset ⇤ ✓ T with minimal order t in
order to execute the protocol properly. The transcript of the protocol and the result are
posted on the bulletin board. Furthermore, each participating trustee has to provide a
proof that he performed his decryption step in a correct fashion.

2.3.2 Voting Properties

In Section 2.1 on page 5 we discussed some security requirements which are desirable for
e-voting systems. The following paragraph assesses the CGS97 protocol against these
requirements.

Democracy. The CGS97 protocol does not specify how the access to the virtual voting
booth is controlled. The e-voting system which implements the CGS97 protocol needs a
sufficiently secure authentication mechanism in order to fulfill the democracy requirement.
The criteria that only one valid vote can be cast is also tied to the authentication
mechanism.

Accuracy. A zero-knowledge proof is used to prove that all valid ballots are tallied
correctly. Since the all the relevant information is publicly accessible on the bulletin
board, this can be verified by anybody.
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Universal verifiability. The bulletin board which is publicly available (for voters as
well as for observers who do not participate at the vote) assures verifiability for anybody.
The bulletin board can also be seen as a transcript of the conversation between the actors
during a voting cycle.

Individual verifiability. The voter can identify her own vote on the bulletin board
along with the other votes. By verifying the zero-knowledge proofs of the trustees which
are created during the tallying and decryption of the result, the voter can be sure that
her vote has been included in the final result.

Privacy. The ballot which has been encrypted and cast by the voter always remains
encrypted unless a sufficient amount of trustees decide conspire and decrypt single votes
and reveal information on how the participants voted.

Receipt-freeness. A voter using the CGS97 scheme is able to create a receipt which
can be used to prove to another person which option has been chosen. The CGS97 scheme
hence does not offer receipt-freeness.

Coercion-resistance. Coercion resistant protocols have mechanisms to allow the voter
to lie about the vote when under coercion. The voter pretends to vote according to the
wish of the coercer while voting in fact according to her intention. Unfortunately, CGS97
does not offer this possibility.

Robustness. The CGS97 protocol offers robustness by including a threshold secret
sharing mechanism that assures a working system as long as a certain number of properly
behaving trustees remain in the system. The other crucial part which requires robustness
is the bulletin board. To achieve robustness, the bulletin board should be replicated so
that multiple consistent instances of the bulletin board are available. The CGS97 scheme
does not specify in detail how this should be achieved. A possible approach can be found
in [8].

2.3.3 Efficiency

From a voter’s perspective, the CGS97 protocol is surprisingly efficient. No matter how
big the electorate of the voting scenario is, there is only one interaction with the e-voting
system in order to cast a ballot. This makes the protocol very efficient from a usability
perspective.
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The CGS97 voting scheme is also very efficient in terms of computation steps. When
we consider a simple yes-no vote, the number of computation steps are linear with regards
to the size of the electorate, as well as the number of trustees. The same is true for the
trustees who are responsible for the key generation and the tallying process.

When we extend the voting scenario from a simple yes-no scenario to a one-out-of-k
scenario, additional complexity comes in. The complexity depends on the encoding of the
ballot, which is discussed in more detail in Section 2.4.

2.4 Ballot Encoding

In many cases, a voting scenario contains more than simply two options. In order to deal
with a scenario of the type one-out-of-k, we need to think about the structure of a ballot
which has to be able to contain more than just two options. To achieve this, we evaluated
two strategies, both with their own advantages and disadvantages. These two strategies
are discussed in the following.

2.4.1 Multi Encryption Ballot

In this strategy we treat each option as an individual yes-no question. To do so, an
encryption containing a 1 for a yes-vote or a 0 for a no-vote for each individual option
using exponential ElGamal is created. In order to prove that the encryption indeed
contains either 0 or 1, a proof of validity is required for each individual encryption.
Furthermore, we need to make sure that each ballot contains exactly one yes-vote. This
can be achieved by creating a validity proof, proving that the sum of all encryptions is
equal to one. In the tallying phase, a ballot is only accepted if all validity proofs are
valid. For each option a homomorphic sum is calculated, containing the corresponding
encryptions of all valid ballots. We then end up with k ElGamal encryptions, containing
the result of each individual option. The trustees then perform a joint decryption of these
values. Because exponential ElGamal is used, the decrypted results appear in the form
ĝr1 , ĝr2 , . . . , ĝrk . To obtain the actual results r1, r2, . . . , r

k

, we would have to calculate the
discrete logarithm, but as we have seen in Section 2.2.1 on page 6, this is a hard problem.
A better way to obtain the results is to exploit the fact that we know the relatively small
set of the possible results. Each result has to contain a value between 0 and n, n being the
size of the electorate. Each result can now be probed by generating values ĝ0, ĝ1, ĝ2, . . .
and compare them to the values ĝr1 , ĝr2 , . . . , ĝrk until the corresponding values for each
option have been found. In the worst case, this decoding operation takes k · n steps.
Figure 2.1 on the following page visualizes the growth of the number of steps as the
electorate and the number of options grow.
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Figure 2.1: Multi encryption ballot - complexity

2.4.2 Single Encryption Ballot

In this strategy, the choice of each option is encoded in a single value, which is then
encrypted. To do so, a bit zero vector which is divided into equally sized sections for each
individual option is used. Let k be the number of options in a vote, and n be the size of
the electorate. For this scenario, we need a bit vector with k sections, each containing at
least dlog2 n+ 1e bits. A vote can then be encoded by flipping the least significant bit of
the chosen option’s corresponding section to 1. This creates a binary representation of
the number v 2 Z

q

, provided that the bit vector does not exceed the bit length of the
order of the group. Figure 2.2 on the next page illustrates how such a vector would look
like if someone chose option B. A voting scenario with this setup would be limited to
2

4 � 1 = 15 participants because each sector can only accommodate numbers from 0 to
15. In order to achieve additive homomorphism with respect to the message, this number
needs to be encoded by calculating v̂ = ĝv (see Section 2.2.2 on page 7). This number
can now be encrypted using ElGamal. In order to prove that exactly one option has been
chosen, a proof of validity needs to be created along with the ElGamal encryption.

During the tallying phase, the encrypted values for each ballots are verified and the
homomorphic product of all valid ballots is calculated. After the joint decryption of
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0 0 0 0 0 0 0 1 0 0 0 0 =
3210

Option A Option B Option C

length: dlog2 n+ 1e

Chosen Option: B

Figure 2.2: Single encryption encoding - ballot vector

this homomorphic product by the trustees, the result of the vote has the form ĝv, where
v 2 Z

q

again represents a bit vector. Each sector of this bit vector now contains the
sum of each individual option. This works because the dimensions of the sectors have
been designed as such that they do not overflow while summing up the votes. Figure 2.3
illustrates the bit vector v containing each option’s result after tallying the vote.

0 0 1 1 0 1 1 1 0 0 1 0 =
88210

Option A Option B Option C

310 710 210

Figure 2.3: Single encryption encoding - result vector

We have seen that after decryption we end up with a value of the form ĝv. v could
be obtained by calculating the discrete logarithm, but as we have seen in Section 2.2.1
on page 6, this is a hard problem. In this case though, we can exploit the fact that the
number of votes is known. Using that fact, we systematically create probing vectors
c1, c2, c3, . . . where the sum of the values encoded in the sectors correspond to the number
of votes that have been cast. We then check whether ĝci

?
= ĝv for i = 1, . . . , x until we

found the corresponding vector. As we can see in Figure 2.4 on the next page, the number
of steps to decode a vote is growing factorially as the number of participants and options
go up. Using this method, decoding a vote with 10 participants and 10 options already
needs almost 100 000 modular exponentiations.
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Figure 2.4: Single encryption ballot - complexity

2.4.3 Comparison

Each of the previously discussed approaches on how to encode a ballot has its own
advantages and disadvantages. For comparing the two approaches, we are using a one-
out-of-k voting scenario with k options and n participants. As we can see in Table 2.1 on
the following page, the single ballot encryption is in many ways more efficient, except
for the decoding part. As the number of participants and options grow, the number
of combinations which have to be probed in order to decode the final result is growing
quickly. For small voting scenarios (n  10, k  10), the single ballot encryption encoding
is clearly the more efficient choice.
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Multi Encryption Single Encryption
Ballot Ballot

Encryptions / ballot k 1

Validity proofs / ballot k + 1 1

Decryption operations k 1

Number of combinations for decoding k · n
✓
k + n� 1

k � 1

◆

Table 2.1: Comparison of ballot encodings

2.5 UniCrypt

UniCrypt is the name of a cryptographic library which is developed and maintained by
the E-Voting Group of the Bern University of Applied Sciences. The main goal of this
project is to create a platform on which upcoming projects can be built on. UniCrypt
tries to look at cryptographic functions such as cryptosystems, signature systems, hash
functions etc. from a mathematical point of view. Cipher texts, plain texts, signatures,
hashes, etc. are treated as elements of algebraic structures, the cryptographic functions
are treated as mathematical functions. This is necessary because in secure protocols
used in the area of e-voting, we depend on the plain textbook implementation of the
cryptographic functions without functions like automatic padding, encoding, etc. This is
the main difference between UniCrypt and other cryptographic libraries.

At the moment, UniCrypt has only been used in classic Java environments, but not
on mobile devices. At this point, a re-engineered version of UniCrypt is under active
development. Further information about UniCrypt can be found in [15].

2.6 InstaCircle

InstaCircle is the name of a project that has been implemented as a preparation of this
master’s thesis. It is intended as a platform to connect mobile devices in a confined
space to a Wi-Fi ad-hoc network in order to exchange broadcast and unicast messages.
In order to keep the network traffic as low as possible, the basic communication relies
on broadcast messages. Since it is not possible to implement a reliable protocol using
broadcast techniques, mechanisms to compensate message losses have been implemented.
These re-sending mechanisms rely on a reliable unicast channel.
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From a usability perspective, the process on agreeing to a communication channel
for an ad-hoc network is quite challenging. All the participants need to have to know
how to switch their devices to the correct Wi-Fi network and enter the correct keys and
passwords. InstaCircle tries to improve the usability by allowing the users to exchange the
configuration by sharing a QR-code or a NFC tag. Once a user has set up a conversation,
other participants can join the conversation by scanning the QR-code or the NFC tag
shared by the initiator of the conversation.

InstaCircle is currently available for Android devices only. Further information about
InstaCircle can be found in [14].

2.7 Related Projects

During the same time period, Philémon von Bergen realized his master’s thesis [1],
implementing the same kind of application but with a different e-voting scheme. His
application uses a protocol specifically designed for decentralized e-voting. It has been
designed in 2012 by D. Khader et. al. [10]. A research team at the Technical University
of Darmstadt is also planning to implement a similar application which is able to deal
with several protocols and more complex voting scenarios.
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This project has been implemented as a master’s thesis project during the Master of
Science in Engineering studies (MSE) at the Bern University of Applied Sciences. This
project values 27 ECTS credits and was spread among two semesters. The hand in of the
project is scheduled for February 7, 2014.

During the same period, my fellow master student Philémon von Bergen worked on a
very similar topic [1], namely the implementation of the decentralized e-voting system
proposed by D. Khader et al. [10]. There was a big collaboration between the two projects,
mainly for the implementation of the graphical user interface. The collaboration between
these projects also made it easier to compare the approaches and evaluate the advantages
and disadvantages of the two approaches.

3.1 Timeline

Original planning. The gantt chart in Figure 3.1 on the next page visualizes the steps
which have been planned on the time axis during the project period. At first, we defined
the project setup, later on the cryptographic components were put in place and were tested
on the Android platform. It was followed by the storyboard and the implementation of
the user interface. Especially in this part there was a strong collaboration with Philémon
von Bergen [1]. At this point we had the cornerstone and were able to implement the
actual e-voting related logic, the implementation of the CGS97 protocol. For this step we
calculated the biggest time period.

Effective timeline. As in many project, there were small deviations regarding the time
consumption of some implementation steps. The implementation of the cryptographic
building blocks in the first part could be done as planned. The implementation of the
graphical user interface and the integration of the network layer took more time than
anticipated, we finished this part in week 46. In order to start with the implementation
of the e-voting logic, we had a dependency on UniCrypt, which converged to a stable
code base in week 46, so an earlier start of the implementation was not possible anyway.
Because of the enormous help of UniCrypt, the implementation of the e-voting logic took
much less time than anticipated, which helped catching up with the planning.
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3.2 Meetings

In order to synchronize the two projects regarding progress, problems and the coordination
of the next work packages, we agreed on one day per week to work together at the same
location in Biel. It was also used to catch up with the advisor and discuss the next steps.

3.3 Project Dependencies

It was planned to use the UniCrypt cryptographic library for implementing the e-voting
logic. This has been done mainly for two reasons:

• Simplify the implementation by gluing together predefined cryptographic building
blocks.

• Use the re-engineered version of UniCrypt for the first time in a project and provide
feedback.

This creates a significant dependency to the UniCrypt project. The library has been
under heavy development during this project and a lot of changes have been implemented
even after we started with the e-voting logic. We could also provide some feedback which
has been integrated into UniCrypt by the UniCrypt development team.

3.4 Source Code Organisation

As a source code repository and a collaboration platform, the free hosting platform
GitHub1 has been chosen. It provides Git2 source code repositories which allow to do
code versioning and branching. It also enables multiple contributors to maintain a certain
code base, which was important during the implementation of the user interface and the
network layer. Using the branching mechanism of Git, we were able to split the code
base apart and implement the project specific protocols on top of the common code base.
Table 3.1 on the following page outlines the three repositories which have been used for
the implementation for this project.

1https://github.com/
2http://git-scm.com/

28

https://github.com/
http://git-scm.com/


3 Organisation

Component Repository URL Branch

Voter App https://github.com/jritter/VoterApp CGS97

AllJoynLib https://github.com/jritter/AllJoynLib unicastfeature

ZXing https://github.com/jritter/ZXing master

Table 3.1: Source code repositories
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During the project phase, a working implementation of the CGS97 voting protocol running
on Android mobile devices has been implemented. We named the application “MobiVote”,
which is related to the name “UniVote”, which is an e-voting system targeted for the use
at a desktop computer. UniVote1 is developed at the same institute, therefore we tried to
create this relation.

In this chapter we present further insights of the design of MobiVote. We will discuss
the technologies on which the implementation is based, the development of the graphical
user interface, the architecture and implementation of the Android application and finally
the contributions to related projects.

4.1 Used Technologies

This Section outlines the frameworks which have been used for the implementation of
this project and how they are put together into an application.

4.1.1 Android

The Android2 platform serves as the foundation of the whole implementation. The
Application has been built using existing building blocks such as Activities, Services,
Fragments, etc. Furthermore, there are existing guidelines and best practices which have
been employed whenever possible. For developing Android applications, the popular Java3

programming language can be used. The Android development kit then compiles this
Java code and creates Android specific Dalvik VM byte code which is then executed on
Android devices.

1https://www.univote.ch/
2http://developer.android.com/
3http://www.java.com/
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4.1.2 AllJoyn

AllJoyn4 is a library which allows peer-to-peer communication between several devices.
The library has been released as open-source recently by the Qualcomm company. It is
available for multiple platforms, including Android. AllJoyn serves as a communication
layer which allows to exchange messages between devices such as smartphones and tablets.
One device acts as master and starts advertising a group to which other devices can
join. Once joined into the group, all the devices in the group can exchange messages
among each other. The communication can happen either in a broadcast (one to many)
or unicast (one to one) manner. The AllJoyn session is by default not secured at all, all
devices in the same Wi-Fi network can join into a group. The security layer used for this
project has been built on top of this insecure communication layer. The implementation
is explained in Section 4.3 on page 38.

The original intention was to use InstaCircle [14] as a communication layer. It turned
out that this type of completely decentralized communication layer did not suit our needs
and did not work as expected in some network configurations. Compared to InstaCircle,
AllJoyn bears the drawback that the communication is orchestrated on the master device
that initiates the group communication. In exchange, the communication is reliable.

Some parts of InstaCircle were used, mainly the WLAN management and the logic
for transmitting the communication parameters could be adapted from the InstaCircle
implementation.

4.1.3 ZXing

ZXing5 (pronounced “Zebra Crossing”) is a Java library provided by Google which allows
to deal with many flavors of bar codes, including QR-codes which are used in this project.
It provides the logic to encode information into a QR-code and display it on the user
interface of the application. It also provides the functionality which allows to use the
camera of a smartphone/tablet as a scanner in order to decode the QR-code which is
being displayed on the screen of another device.

In this project, we are using this functionality for transmitting the parameters of the
group to other devices. These parameters include the SSID of the WLAN that is being
used, the encryption key of the conversation, as well as a group identifier in case there
are multiple conversations running in the same network.

4https://allseenalliance.org/
5https://code.google.com/p/zxing/
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4.1.4 AChartEngine

AChartEngine6 is an open-source library which can be used to draw all sorts of charts on
Android devices. In this project, we use this library in order to visualize the result on the
result screen using a pie-chart.

4.1.5 Simple

Simple7 is an open-source framework which allows to serialize and deserialize Java objects
to XML. It is used to save and export the transcript of a vote to a XML file. This
functionality is further discussed in Section 4.5 on page 43.

4.1.6 UniCrypt

UniCrypt8 is a cryptographic library which provides mathematical and cryptographic
primitives which are used for implementing the e-voting protocol for this application. The
version 2 of UniCrypt is currently under active development. The use of this library in
this project also helped to improve UniCrypt itself. Since UniCrypt is developed at the
same institute, problems could be addressed and fixed right away. Since this project is
one of the first projects using UniCrypt, it also served as a test bed for UniCrypt. For
this project, some non-existing components of UniCrypt have been implemented. The
result of this work is discussed in further detail in Section 4.8 on page 50.

Since UniCrypt is an essential cornerstone of this project, it is discussed in further
detail in Section 4.1.6.

4.2 Graphical User Interface

A crucial aspect for the success of e-voting is the usability for the end user. This becomes
even more important when e-voting should be used in an ad-hoc manner, where the
formality is less visible compared to official elections. Also, the time consumption for
a voting cycle has to be as short as possible, which is also a significant difference to
classically held elections.

6http://www.achartengine.org/
7http://simple.sourceforge.net/
8https://github.com/bfh-evg/unicrypt/
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4.2.1 Storyboard

Before the actual implementation of the Android application, we tried to develop a
screen design which meets these requirements. This screen design has been designed as
a storyboard without writing actual code. We have chosen an iterative approach where
the design has been peer reviewed several times before the final draft was available. One
major decision point was to decide whether we implement a single Android application or
whether we should split it into an app for the voter and another for the vote administrator.
The approach with multiple apps turned out to be confusing and was hence dismissed.

The design which has been finally chosen is based on a single Android application. A
voting cycle can be broken into several phases which are outlined in the following, along
with the storyboard for this particular phase.

Create a Vote. The designated administrator of the vote is responsible for creating a
vote, namely defining the question and the possible options which can be chosen later
during the voting phase. A vote can also be prepared and saved in advance in order to
save time at the reunion. From here, the administrator can also start the voting process.
The screen design of this phase is illustrated in Figure 4.1.

MobiVote

Votes

Votes archive

MobiVote

What's the best ski resort in Switzerland?

Grindelwald

Save

Question of the vote:

MobiVote

Start vote

Available votes

Join elecotrate
1

Adelboden

Titlis

Flims-Laax

OptionsVotes

What's the best ski resort in

What's the prettiest color?

Switzerland?

How should be the
next president?

1

7
1

Figure 4.1: Setup a vote

Network Setup. The next step after defining a vote is to define in which network
environment the voting session will take place. The first person to do so is the vote
administrator. He can choose a Wi-Fi network in which the network session will be
started. The information about the chosen network as well as the generated session
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password has to be shared with the participants. To do so, the administrator can either
just read the information out loud, or share the information using either a QR-code or
write the information to a NFC token which can be passed to all participants. Using this
information, the participants can join the network session with their devices. Before joining
the session, each participant (including the administrator) has to define an identification
string for themselves. The screen design of this phase is illustrated in Figure 4.2.

MobiVote

MobiVote

Select Network Network is now Ready

Network Name: Network 1
Network Password: Secret

Next

Display QR Code

Write NFC Token

MobiVote

Network Setup

Use Currenlty connected WLAN

Advanced Network Con�guration

Joe

Modify Network

Scan QR Code

Scan NFC Tag

My identi�cation

1

2 3

Displays QR Code using the
"Barcode Scanner" App

parameters on an NFC
Writes the network

devices)
token (only on NFC capable

Vote ParticipantVote administrator

network parameters (not visible
Scans a QR code containing the 

for admin)

Scans a NFC tag containing the 
network parameters (not visible
for admin)

Network to use

Network 1

Network 2

Network 3

Create new network

MobiVote

Figure 4.2: Network setup

Defining the Electorate and Review of the Vote. After joining the network session,
a list of all the session participants is displayed. At this stage, the administrator can
define the electorate, meaning he can select the participants which are allowed to vote.
This can be done by clicking on the checkboxes next to the participant’s identification.
The participants can see who has been selected on their devices.

Once the administrator has defined the electorate, each participant has to confirm
that all the parameters of the vote (question, allowed options and electorate) are correct.
The vote can only be started by the administrator if the whole electorate has agreed. If
necessary, the administrator can go back and do changes on the vote parameters.

The screen design of this phase from the administrator’s perspective is illustrated in
Figure 4.3 on the next page and from the voter’s perspective in Figure 4.4 on page 36.

Voting phase. Once the vote has passed the review, the vote itself can take place.
Each participant can choose an option and cast it. The screen transitions to a view which
shows the vote casting state of all the participants. The screen design of this phase is
illustrated in Figure 4.5 on page 36.
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Electorate

MobiVote

Next

MobiVote

Start

What's the best ski resort
in Switzerland?

MobiVote

Stop voting period

Running vote

Cast Votes: 1 of 2 6
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4

6

Admin can exclude people from 
the electorate

If admin does not belong to electorate

If admin belongs to electorate

Options

Adelboden

Titlis

Flims-Laax

Grindelwald

Participants

Joe

Alice

Bob

Alice

Joe

ParticipantsParticipants

Joe

Alice

Figure 4.3: Administrator defining the electorate

Displaying the result. The vote is tallied as soon as the last vote has been cast, or
if the administrator has ended the voting phase. The result is displayed in form of a
pie-chart and a tabular view. The result of the vote is saved on each device and can be
revisited using the archive function in the main screen. The screen design of this phase is
illustrated in Figure 4.6 on page 37.

4.2.2 Implementation

The user interface has been implemented according to the storyboard presented in the
previous section. The Android platform provides a powerful framework to implement rich
user interfaces. The framework also allows to handle different layouts for each individual
form factor. This is necessary because devices can have different screen sizes and are
normally used in different orientations. A layout designed for a smartphone in portrait
mode usually does not fit well on a tablet in landscape mode. To deal with this issue,
multiple layouts have been developed to cope with this issue. The Android framework
then automatically applies the correct layout.
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MobiVote

What's the best ski resort
in Switzerland?
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MobiVote

Agree
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Figure 4.4: Review of the vote from voter’s perspective
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Figure 4.5: Vote casting
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What's the best ski resort
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Redo vote

7 6
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Figure 4.6: Result of the vote
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4.3 Bootstrapping of Group Communication

In order to assure privacy and authenticity of a voting session, the communication between
the participant’s devices needs to be secured using cryptographic means. To achieve that,
different types of cryptographic keys need to be exchanged. When joining a voting session,
the user needs to provide a conversation password which has been generated on the device
of the vote administrator. The administrator has several possibilities to distribute this
password, along with the other information which is needed to connect, namely the SSID
of the WLAN on which the conversation takes place and the group name to identify the
conversation. The following possibilities are available:

• Communicate the password, the group name and the SSID as text. Participants
who want to join the session need to enter these parameters using the soft keyboard
of the mobile device.

• Display a QR-code which encodes password, group name and SSID. Participants
who want to join the session can snap a picture of this QR-code using the camera
of the mobile device and decode the information on their devices.

• Write password, group name and SSID to a NFC tag which then can be passed
along to all the participants. When tapping this NFC tag on the back of a NFC
capable device, the User will be connected to the session.

The application uses the password to derive an AES key which will be used to symmet-
rically encrypt all the broadcast traffic in the conversation. Furthermore, a dynamic salt
which is generated by the administrator decreases the risk of rainbow table attacks.

In order to guarantee the authenticity and integrity of the messages in the conversation,
each participant generates an RSA key pair. The public key is broadcast to all the
participants. This key setup can then be used for signing/verifying all the messages in
the conversation, as well as for establishing a secure point-to-point channel between two
participants in the conversation.

For the unicast functionality of the messaging layer, a hybrid encryption mechanism is
used. To achieve this, we encrypt an AES key which is used previously to encrypt the
unicast payload using the RSA public key of the recipient. The recipient can then use
his private key to decrypt the AES key, and then in a second step use this AES key to
decrypt the payload.
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4.4 Messaging

For the communication between devices and components, a messaging infrastructure is
required. We can divide the messages which are exchanged during a voting period into
two categories:

• Network Messages: Messages which are exchanged between the participant’s
mobile devices.

• Local Broadcast Messages: This type of messages are Messages which are passed
between Android components, for example: A user interface component needs to be
updated if a specific event occurs.

In order to distinguish the messages in order to decide how they should be processed,
messages types were defined. The following two sections describe the message types
which have been defined for each category and provide further technical insight how the
messaging infrastructure has been designed.

4.4.1 Network Messages

Network Messages are required to exchange messages between the mobile devices of
the participants. This is necessary for establishing the voting session, as well as for
exchanging protocol specific values, for example an encrypted ballot. These messages are
passed through a stack of communication layers. Figure 4.7 on the next page depicts
how this stack is built. For establishing a group communication among network devices,
the AllJoyn library is used. For the specific use in MobiVote, a wrapper library has
been implemented. The availability of this interface allows to interchange the messaging
library which is used for MobiVote. The AllJoyn interface library allows to send broadcast
messages which reach all the participants of the group. Most of the communication is
done in this manner. It is also possible to send a message to a specific member of the
group. This method is called unicast. In order to distinguish the different purpose of the
messages interchanged between the participant’s devices, a number of message types have
been defined. These message types are outlined in Table 4.1 on page 42.

4.4.2 Local Broadcast Messages

The Android framework provides an internal messaging infrastructure which allows
Android components to communicate among each other. Any component can broadcast
messages using this infrastructure. These messages can be received by any component
which registered a so called Broadcast Receiver. All the registered components will then
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MobiVoteMobiVote

AllJoyn Interface LibraryAllJoyn Interface Library

AllJoynAllJoyn

Android Network StackAndroid Network Stack

implemented during this project

The AllJoyn interface library
provides an interface to the
messaging infrastructure which
can be used by MobiVote.

The AllJoyn interface library
provides an interface to the
messaging infrastructure which
can be used by MobiVote.

AllJoyn provides an API which
allows to use the library’s func-
tionality.

AllJoyn provides an API which
allows to use the library’s func-
tionality.

AllJoyn uses the network API
provided by the Android plat-
form.

AllJoyn uses the network API
provided by the Android plat-
form.

Figure 4.7: Messaging architecture
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be notified as soon as a message has been broadcast. This mechanism can be used for
example to update the User Interface according to a specific event. This paradigm was
used heavily for the implementation of this project.
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Message Type Description

VOTE_MESSAGE_ELECTORATE Used during the setup
phase to indicate which
participants are allowed to
vote.

VOTE_MESSAGE_POLL_TO_REVIEW Used to signal the partici-
pants that a vote is avail-
able for review.

VOTE_MESSAGE_ACCEPT_REVIEW Used by the participants to
signal that they agree with
the proposed vote.

VOTE_MESSAGE_START_POLL Used to signal the start of
a voting period.

VOTE_MESSAGE_COEFFICIENT_COMMITMENT Used during the key gener-
ation phase for committing
to the chosen coefficients.

VOTE_MESSAGE_KEY_SHARE Used to transmit the key
shares between partici-
pants.

VOTE_MESSAGE_KEY_SHARE_COMMITMENT Used to commit to the key
share used for performing
the part decryption.

VOTE_MESSAGE_VOTE Used to transmit a vote.

VOTE_MESSAGE_STOP_POLL Used to signal the end of a
voting period.

VOTE_MESSAGE_CANCEL_POLL Used to signal the cancella-
tion of a voting period.

VOTE_MESSAGE_PART_DECRYPTION Used to transmit a part de-
cryption after the voting
period for jointly decrypt-
ing the result of the vote.

Table 4.1: Network message types
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4.5 Data Structures

In this section the used data structures to store data within the MobiVote application are
introduced.

Database. For the management of the available votes in the system (prepared as well
as completed votes), a small database structure has been implemented. The Android
platform embeds the sqlite9 database in its API, hence this was the obvious choice for the
database technology. Figure 4.8 depicts the very simple data structure which has been
chosen for this project.

1 0..*

poll

+ question : string
+ starttime : int
+ is_terminated : boolean
+ number_participants : int

option

+ text : string
+ nbr_votes : int
+ percentage : real

Figure 4.8: Entity relationship diagram

According to the Android best practice, a SQLiteOpenHelper class has been imple-
mented which manages all the database communication. It also takes care of the mapping
between entity objects and database entries. Figure 4.9 on the following page depicts the
implemented entity classes. The entity class which represents a participant does not have
a corresponding database identity, this is because the participants of the vote are defined
during the voting cycle. It is also not relevant later on when displaying the result of the
vote, therefore the information about the participants is not stored in the database.

XML Serialization. In order to make a vote verifiable, all the relevant values such as
cryptographic parameters, encrypted ballots, zero-knowledge proofs, etc. of the CGS97
voting protocol are serialized into a simple XML file. To do so, we are using the Simple
framework. Using this framework, we can create a set of classes which are used to store
all the values which should be written into a file. Instructions how the serialization should
happen are defined using annotations in the class. This type of simple class is also known
as POJO (Plain Old Java Object)10. These POJO classes could later be used for writing a

9http://www.sqlite.org/
10http://en.wikipedia.org/wiki/Plain_Old_Java_Object
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1

0..*

1

0..*

Poll

- id : int
- question : String
- options : List<Option>
- participants : Map<String,Participant>
- numberParticipants : int
- startTime : long
- isTerminated : boolean

+ accessor methods

Option

- id : int
- pollId : int
- text : String
- votes : int
- pecentage : double

+ accessor methods

Participant

- identification : String
- uniqueId : String
- hasVoted : boolean
- isSelected : boolean
- hasAcceptedReview : boolean

+ accessor methods

Figure 4.9: Entity class diagram
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verifier software which allows to check a vote by a third party software. The POJO classes
can be found in the Java package ch.bfh.evoting.voterapp.protocol.cgs97.xml.

4.6 Voting Protocol

A major goal of this project is to create a decentralized e-voting system which provides
as many security properties as possible. These properties are discussed in Section 2.1 on
page 5. The CGS97 voting scheme [3] offers most of these properties. The properties of
the CGS97 scheme are discussed in Section 2.3 on page 16. This section gives an overview
of some aspects which have been considered during the implementation.

4.6.1 Modifications in the Protocol

The CGS97 scheme has not specifically been designed for decentralized e-voting systems.
The protocol itself remains exactly the same, but the assignment of some roles are slightly
changed:

Trustees: The CGS97 scheme stipulates the role of trustees. Trustees are responsible
to jointly generate an asymmetric key pair for the voting session and jointly decrypt the
result after the voting period has come to an end. In the decentralized scenario, we merge
the role of the trustee with the role of the participant. This does not create a conflict
because a trustee can also be a participant in the vote. The fact that we assign the role
of a trustee to each participant also reduces the complexity from a usability perspective,
because no explicit assignment is required during the setup process of the vote.

Bulletin Board: In classic e-voting scenarios, a bulletin board is considered as a
centralized high available infrastructure. This paradigm cannot be applied to the decen-
tralized voting scenario because no central infrastructure should be required. Instead,
each participant creates its own transcript of the voting protocol. Almost all messages are
exchanged by broadcasting them to all participants of the group and can be intercepted
and recorded by each participant. In case of a manipulation, the participants would
discover the manipulation by comparing the recorded values using their physical proximity.

4.6.2 Ballot Encoding

One goal of this project was to build an e-voting system that supports one-out-of-k voting
scenarios. This functionality can be achieved by employing a ballot encoding mechanism.
We discussed two possible vote encodings in Section 2.4 on page 20 we discussed two
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approaches, each with its own advantages and disadvantages. The single encryption ballot
encoding is the more efficient approach in the voting phase. In the tallying phase on
the other hand, this approach becomes very expensive as the number of options and
participants increase. At this point, the multi encryption ballot encoding comes in. In
order to get better performance in small voting scenarios while being able to perform
votes with a big number of votes and participants, a hybrid system has been implemented.
Using the strategy pattern, the protocols can be interchanged. The decision which strategy
is going to be used is reached by calculating the number of steps which are required to
tally the vote in a single encryption ballot scenario. In order to calculate the number of
these steps, the following formula can be used, k being the number of options available, n
the number of voting participants and s the resulting number of steps:

s =

✓
k + n� 1

k � 1

◆

Further background regarding this relation can be found in [1] and [7]. As a threshold
value for s, the number 10 000 has been chosen. This value seemed to be a reasonable
balance, considering that the evaluation of a combination takes roughly 1.8 milliseconds
on a modern device. That means that we allow a tallying time of 18 seconds on modern
devices. If s is smaller, the single encryption ballot encoding is used, the multi encryption
ballot strategy otherwise.

4.6.3 Vote Export

We have seen that the CGS97 protocol is verifiable. The implemented application of
course does all the checks in order to make sure that nothing goes wrong during the voting
process. For the user, these security mechanisms are not visible, and therefore a user
could question the soundness of the voting process. Since all the relevant cryptographic
values are recorded and saved, we can export these values so that a third party verification
software could verify the voting process. This export functionality exports all the values
of a vote into a XML File. The XML structure depends on the vote encoding that has
been chosen. Figure 4.10 on the following page depicts the structure which is used for a
multi encryption ballot vote, Figure 4.11 on the next page the structure used for a single
encryption ballot vote.
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MultiEncryptionBallotVote

p q generator List<option> List<participant> publicKey question threshold

text votes ballot List<coefficientCommitments> identification keyShareCommitment partDecryption uniqueId

ballotValidityProof List<ballotOption>

List<valueT> List<valueC> List<valueS>

value1 value2

ballotOptionEncryption ballotOptionValidityProof

value1 value2 List<valueT> List<valueC> List<valueS>

value1 value2

List<value> List<equalityProof>

valueT1 valueT2 valueC valueS

Figure 4.10: XML structure of a multi encryption ballot vote

SingleEncryptionBallotVote

p q generator List<option> List<participant> publicKey question threshold

representation text votes ballot List<coefficientCommitments> identification keyShareCommitment partDecryption uniqueId

ballotEncryption ballotValidityProof

value1 value2 List<valueT> List<valueC> List<valueS>

value1 value2

value proof

valueT1 valueT2 valueC valueS

Figure 4.11: XML structure of a single encryption ballot vote
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4.7 Testing

To verify the correct behaviour of the implemented product, a number of different tests
have been conducted during the implementation phase. These testing activities are
outlined in the following.

4.7.1 Functionality Tests

The functionality tests took place right after the implementation step. They were all
done manually on the available devices. The devices outlined in Table 4.2 were available
for testing the functionality.

Device Form factor Android Version

Samsung Galaxy S 3 Smartphone 4.3 (Samsung original)

Samsung Galaxy S 1 Smartphone 4.3.1 (CyanogenMod)a

Samsung Galaxy Tab 10.1 Tablet 4.0.4 (Samsung original)

ahttp://www.cyanogenmod.org/

Table 4.2: Testing infrastructure

4.7.2 Usability Tests

The implementation phase of this project started with the implementation of the Graphical
User Interface of the application. At this stage, it was possible to setup and run a vote
on multiple devices, but without the security of the later implemented e-voting protocol.
This implementation was then used to verify that the user interface of the application
does not cause any confusion among users. Several people without any background in
the e-voting area were asked to use the application and provide feedback. The feedback
we got from the first implementation showed potential for optimization, details such as
the placement of buttons or the purpose of some user interface elements. The overall
feedback showed, that we were able to build a e-voting application which is easy to use.
The implementation of the e-voting protocol which was done after the usability tests
mostly took place behind the scenes, there were only some slight modifications in the user
interface necessary to add this functionality.
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4.7.3 Load Tests

In a decentralized environment, the load which each device has to handle grows with
the number of participants and the number of options in a vote. In order to verify
that the implementation is able to handle scenarios with more than just 3 participants,
17 LG Nexus 5 smartphones running Android version 4.4 were available to test more
complex scenarios. Various tests with different scenarios have been performed and assessed
regarding time consumption in the two most time consuming steps, namely casting a
ballot tallying a vote. The results of these performance tests are shown in Table 4.3.
The performance tests were executed using the two separate ballot encoding strategies as
discussed in Section 2.4 on page 20. Another relevant factor regarding performance is the
bit length of the cryptographic parameters p and q. For all tests, parameters with the
length of 2048 bits have been used.

Single Ballot Multi Ballot

Encryption Encryption

Options Participants Cast Ballot Tallying Cast Ballot Tallying

4 3 2.0 s 1.2 s 3.7 s 3.7 s

4 4 2.0 s 1.3 s 3.4 s 3.6 s

4 5 2.0 s 1.3 s 3.2 s 4.0 s

6 3 2.6 s 1.2 s 4.3 s 4.8 s

6 4 2.4 s 1.5 s 4.8 s 5.4 s

6 17 2.5 s 39.0 s 4.6 s 22.0 s

10 17 2.4 s - 6.7 s 47.2 s

Table 4.3: Performance test results

These results clearly show that the single encryption ballot strategy is the better choice
for small voting scenarios, looses its advantages in bigger scenarios because the number of
combinations which have to be checked during the tallying process grows factorially. One
combination check (which is basically a modular exponentiation) was measured to take
around 1.8 milliseconds on a LG Nexus 5 smartphone. In the scenario with 10 options
and 17 participants, the tallying process would take roughly 2 hours and 40 minutes, that
is why there is no result for this scenario in the table. Using the multi encryption ballot
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strategy on the other hand, tallying the same scenario takes 42 seconds.
The performance tests were executed on modern smartphone hardware which can

perform expensive operations such as generating encryptions and proofs in a reasonable
time. The user experience on older devices such as the Samsung Galaxy S1 offer a less
smooth user experience, especially when using the multi encryption ballot strategy which
requires much more calculation power for creating and verifying ballots.

The load tests with many devices also unveiled another fact: The AllJoyn communication
framework only allows 16 devices to join into a communication group. This restricts
the voting scenario to a maximum of 17 participants, including the administrator who
initiated the communication session. According to the documentation of AllJoyn, the
library does not have such a restriction, which after a glance into the source code of
AllJoyn proved to be not true. This is why this restriction has been discovered only in a
late stage of the project.

4.8 UniCrypt Extensions

The CGS97 protocol contains a few building blocks which were not part of the UniCrypt
library by the time this project started. Part of the goals of this project was to enhance
UniCrypt so that the logic could be used in the implementation of this application and
make it also reusable in further upcoming projects. In the following we describe how this
implementation has been done.

4.8.1 Shamir Secret Sharing Scheme

In 1979, A. Shamir proposed a scheme [18] on how a secret can be split into several
independent pieces which can be distributed among several authorities. It is not possible
to recover the secret unless a sufficient amount of these authorities collaborate in order to
recover the secret. Further details regarding this scheme can be found in Section 2.2.4 on
page 9.

Implementation. The implementation has been embedded into the existing UniCrypt
structure. The class in which the implementation has been done is the following:
ch.bfh.unicrypt.crypto.schemes.sharing.classes.ShamirSecretSharingScheme

The instantiation of this scheme requires three parameters:

• An algebraic field of the type
ch.bfh.unicrypt.math.algebra.dualistic.classes.ZModPrime. The secret which
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should be shared later on has to be an element of this field.

• The number of shares which should be produced

• A threshold value which defines how many shares must be reunited in order to
recover the secret

A secret can be shared using the method share(), which takes a message as an
argument. The message must be an element of the field which has been specified during
the initialization of the scheme. The method returns an array of value pairs. Each pair
represents a share.

The secret can be recovered using the method recover(), which takes an array of value
pairs as an argument. The array must at least contain as many value pairs as specified
with the threshold value during instantiation. The method returns a single element which
represents the recovered secret.

Testing. UniCrypt components are tested using the JUnit11 framework. A JUnit Test
for the Shamir Secret Sharing scheme has been implemented in order to check the correct
functionality after each change that is done in the UniCrypt library. The following test
class has been implemented:
ch.bfh.unicrypt.crypto.schemes.sharing.ShamirSecretSharingSchemeTest

4.8.2 ElGamal Proof of Validity

A proof of validity is required if a party wants to prove that an ElGamal cipher text is
the encryption of element of a set of possible plain texts without revealing which one it is.
Section 2.2.5 on page 14 covers this topic in further detail.

The implementation of the this proof has been done in a very early stage of this
project, according to the architecture of UniCrypt 1. In the meantime, UniCrypt has
been completely re-engineered. The validity proof has been re-implemented independently
of this project in order to fit into the new architecture. Since this project is based on
UniCrypt 2, the project makes use of the re-implemented version of the ElGamal proof of
validity.

11http://junit.org/
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5 Discussion

At the end of this project, we reached the goal of creating an e-voting application which
runs on mobile devices and can be used without additional infrastructure and offers
security features such as privacy, anonymity and verifiability. This chapter reflects on
certain aspects of this work.

5.1 Decentralized E-Voting

This section examines the term decentralized in relation to this project and what approaches
have been chosen to achieve decentralized e-voting.

Communication Layer: During this project we implemented an e-voting system which
does not require any other infrastructure than the devices of the participants (smartphone
or tablets). As a communication layer for the communication between the devices, WLAN
is used. Many facilities provide a WLAN infrastructure. The application provides the
functionality to use this infrastructure, but also offers the possibility to set up a new
WLAN network using the hotspot functionality of Android. The hotspot integrated in
older devices is usually not as powerful as a hotspot which is designed for large networks.
For larger scenarios it is recommended to use a proper infrastructure WLAN hotspot as
the communication layer. One can argue that this violates the principle of decentralization.
This is true for the base communication layer, but it does not affect the decentralized
behaviour of the e-voting protocol which is running on top of this communication layer.

Messaging Layer: In a preceding project, a decentralized messaging infrastructure for
Android called InstaCircle [14] has been implemented. The goal is to establish a group
communication so that the participating devices can exchange messages among each other.
The message exchange in InstaCircle is based on broadcasts in an IP network. Because
broadcast communication does not offer a reliable message exchange, this approach turned
out to be not reliable enough in certain network situations. The messaging layer has been
replaced by the AllJoyn library (see Section 4.1.2 on page 31). In contrast to InstaCircle,
the initiator of a group takes the role as a master who orchestrates the communication
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within the group. In some sense, this violates the principle of decentralization too. The
choice of this architecture can be justified for two reasons though:

• The master only orchestrates the message exchange. Attempts to cheat on the
e-voting protocol layer would be recognized by the protocol.

• In a voting session, some sort of administrator is necessary. This person is predestined
to take the master of the group communication as well.

Regardless of who manages the group communication, from an infrastructure point of
view, the communication between the devices can still be done in a decentralized manner.

E-Voting Protocol: As we have seen in Section 2.3 on page 16, the protocol has not
specifically been designed to be used in decentralized scenarios. The protocol has been
adapted in two major points in order to achieve this property:

• All the participants become trustees and contribute to the key generation and
decryption process

• All participants have their own bulletin boards

More details regarding these modifications can be found in Section 4.6 on page 45. The
fact that there is no central bulletin board also means that there is no master on which
the final result is derived from. Even though several security measures have been built
into the application, we still have to consider that this software runs on devices which
are potentially compromised. For example, a malware could fake the screens when the
application asks for input or displays the result. At this point, we can take advantage
of the fact that the votes only take place in a confined space where the participants can
communicate visually and orally without using their devices. In the case of a disagreement
on the official result of the vote, the participants can compare the result displayed on
their device and then take one of the following actions:

• Agree on the result which is displayed on the majority of devices.

• Rerun the vote, potentially with different devices.

Using this method of negotiating without using the devices should allow to agree on an
official result of the vote.
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Verifiability: Using the recorded values on the bulletin board, the whole voting cycle
can be verified. It stands for itself that the MobiVote application verifies all the values,
but in order to increase the confidence in MobiVote, it would be desirable that a vote
can be verified by an external software. To do so, MobiVote offers the functionality to
export the values of the bulletin board to an XML file, which then can be used as an
input for an external verifier software. One missing link in this verifiability chain stems
from the fact that the identities used in a vote are created ad-hoc when establishing
the group communication before voting. That means that the integrity of the messages
which are exchanged can only be verified during the session. Of course, the public keys
of all participants used during a particular voting session could also be exported, but
could be replaced along with all the signatures which are recalculated using the private
key corresponding to the new public key. This missing link could be added by using
identities verified by a trusted authority, for example with digital certificates. Dealing
with certificates usually has a significant negative impact on the usability. Furthermore,
only a minority of people are in possession of such a digital certificate which could be
used as a digital identity during the voting process.

5.2 Usability

In retrospective, the decision to create a proper storyboard before we started to implement
the user interface was a very good decision. It forced to reflect on how such a spontaneous
e-voting process should look like in practice. It turns out that the process in such a
spontaneous manner looks different compared to a classic e-voting scenario in many ways.
For example, we need to find a way on how the electorate and setup can be defined and,
more importantly, approved by everybody before the vote itself can start. When we
consider classic voting scenarios, the electorate is clearly defined in advance, for example
all eligible citizen of a country. The same is true for defining how the question and
the possible options should be defined. Quite some paperwork usually precedes a vote,
whereas in a spontaneous vote, the setup needs to be approved somehow.

Before implementing the actual e-voting protocol which provides the e-voting specific
security measures, we had an implementation ready which allowed to perform a vote in a
decentralized manner, but did not offer the desired security. We used this stage to do
tests of the communication layer and, more importantly usability tests (see Section 4.7.2
on page 48). The fact that the user interface at this stage and at the final stage almost
looks identical shows two things:

• We were able to implement the e-voting protocol in an almost transparent manner.
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• The storyboard that has been designed seems to be universal and not specific to
this implementation.

The latter fact is also underpinned by the fact that the partner project came to the same
conclusion (see Section 5.4 on the next page).

5.3 Security Considerations

It speaks for itself that security plays a crucial role in the context of e-voting. In this
project we employed modern cryptographic techniques which are the answers to many
threats. Nevertheless we had to make some compromises. Most of them relate to the
tradeoff between security and usability. This section should give an overview of these
compromises.

Public Key Exchange: In order to guarantee the authenticity of messages which have
been exchanged during a voting session, each participant needs a private key for signing
all the outgoing messages. All the other participants need to be in possession of the
corresponding public key, which they use to verify incoming messages of that particular
sender. Obviously these public keys have to be exchanged at the beginning of the session.
Of course, these keys can be transmitted using the existing network communication layer,
but since these keys are not linked to a real life identity, we can only assume that the
key really belongs to the sender. During this key exchange process, a participant could
hence impersonate somebody else. The key exchange happens on the secured layer, so
that impersonation would have to be done by a participant who is in possession of the
group password. This fact reduces the risk significantly, because since all participants are
gathered in the same physical space, the fact that something is wrong would be discovered.
The fact that non-certified keys are used for each session also makes it impossible to verify
the authenticity of the messages after the voting session.

This problem could be solved if each participant has its own certificate, which is a
certified digital identity that lasts for longer than just a voting session. Unfortunately
only a small percentage of people possess a digital certificate nowadays. Requiring such
a certificate would narrow the group of potential users further down and would have a
negative impact on the security.

Untrusted Devices: Nowadays, smartphones are little computers which allow to run
all sort of software. The ever growing popularity of these devices also caused malware
to appear. Malware could be employed to circumvent security measures, for example by
showing a user a fake screen on its devices. For example, during a vote with options A
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and B, the malware would display option B instead of A and vice versa. This causes a
voter that intends to vote for option A to vote for option B. Malware could also be used
to collect information on how a participant voted. Dealing with untrusted platforms is
subject of ongoing research and is out of scope of this project.

5.4 Comparison to the Partner Project

During the same period, a project with the same focus, but with a different e-voting
protocol has been implemented [1] (see Chapter 3 on page 26). This allows us to compare
each others implementation. In both projects, the specified e-voting protocol could be
implemented successfully. Also, both projects share the same user interface, which shows
that the storyboard is generic. There is only one small deviation in the implementation of
this project, namely the threshold parameter which has to be defined in the secret sharing
part of the CGS97 e-voting protocol. Sharing the same user interface also means that the
protocol implementation could be merged into a single app and let the user choose which
protocol to use.

As we found out, both protocols have their own advantages and disadvantages, mainly
in the area of performance. The HKRS12 protocol [10] which has been implemented in
the partner project is specifically designed for this kind of voting scenarios. It is also a
very slim protocol which results in a faster execution, especially on slower devices. A
disadvantage is the fact, that the decoding step of the HKRS12 protocol requires an
exhaustive search of combinations in order to avoid the discrete logarithm problem, very
similar to the single encryption ballot encoding used in this project (see Section 2.4.2 on
page 21). This means that the time consumption of the tallying process grows rapidly as
the number of participants and options increase. In this implementation we have the same
problem when using the single encryption ballot strategy, but in this implementation we
have the option to switch to the multi encryption ballot strategy (see Section 2.4.1 on
page 20).

5.5 Challenges

Along the way to the finished app, there were a few challenges to overcome. This section
should give an overview on some points that turned out to be a bit more challenging than
anticipated.

Decentralized Communication: The original plan was to employ the InstaCircle
communication infrastructure in the project. InstaCircle is a completely decentralized
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communication infrastructure. That also means that here is no master instance which
manages the overall state of the communication session. Problems with synchronisation
and reliability arise. This is one reason that the communication layer has been switched
to the AllJoyn library.

Security - Usability Trade-off: From a user’s point of view, security usually puts
many obstacles in the way. PIN-codes, passwords, keys, certificates and similar things are
confusing the users. To keep the usability on an acceptable level, some compromises have
been made. One such compromise is the use of non-certified identities. Of course, the
design of a usable user interface was quite a challenge on its own.

Android Wi-Fi API: The android platform provides an API for managing the Wireless
connections on an Android device. This API is used in our application to properly configure
the network on which the voting session is going to take place. Despite the documentation,
it took quite some time to figure out how this API can be used properly.

Robustness in many Situations: An application running on a mobile device has to
be in a way that it can deal with many unexpected situations. For example, an incoming
phone call should not disrupt the entire ongoing voting process. In a voting scenario
with many participants, the chance that something unexpected happens are quite high.
If these situations are not handled properly, the votes have be rerun many times until
everything works as expected.

Ongoing Development of UniCrypt: During the implementation phase of this
project, UniCrypt was still under heavy development and was undergoing a lot of changes,
also on the exposed interfaces on the library. Updating to the newest snapshot version of
UniCrypt often also required changes in the implementation of the protocol.
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6 Conclusion

During this project, we implemented a mobile e-voting application which can be used for
boardroom voting. It is running on the popular mobile platform Android and therefore be
used on devices such as smartphones and tablets. There is no infrastructure other than
the participant’s devices required in order to run a vote on them. During this project, we
also contributed to the UniCrypt library and implemented cryptographic building blocks
which were used to implement the application at hand. We were also able to give feedback
regarding the ongoing implementation of UniCrypt and also found some bugs along the
way. Of course, these bugs have been fixed by the UniCrypt development team in the
meanwhile. The fact that we could implement multiple cryptographic protocols relatively
easy also proves, that UniCrypt is heading in the direction that it was intended to.

The user interface design of a decentralized e-voting system requires some additional
considerations, for example there is a mechanism required which allows the participant
to approve a certain vote setup. We invested a good deal of time into building a user
interface for mobile devices that allows to deal with this additional requirements. After
some unsatisfactory attempts, we ended up with a design that met the requirements,
proved by usability tests. The user interface has been designed in cooperation with
another master’s thesis project [1]. This cooperation proved to be extremely valuable,
thanks to a lot of discussions and different perspectives. The fact that the resulting user
interface was also used in the master’s thesis project of Philémon von Bergen shows that
we built a truly universal user interface for decentralized e-voting systems.

6.1 Future Work

The application at hand could be extended in many different ways. In this section we
present some ideas for extensions which could be realized in the future.

Mobile Platforms: The current implementation is limited to devices running the
Android mobile operating system. All participants have to be in possession of an Android
device. Despite the fact that Android is an extremely popular platform, this would be a
big coincidence. To enable users of other mobile platforms to participate on votes, this
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MobiVote implementation should be re-implemented on other platforms such as Apple
iOS or Windows Mobile.

Vote Verifier: The MobiVote application allows to export all relevant cryptographic
values which are required to verify the whole vote process. After exporting these values,
they could be fed into a verification software that recalculates all necessary steps and
recalculates potential problems.

Identity Management: At this point, MobiVote works with temporary identities for
each voting session. This fact makes it impossible to check the integrity of messages after
the voting session ended because the identity cannot be assigned to a human participant
or at least to a device. This issue could be solved if MobiVote could use identity providers
to assign a participant distinctively to a identity.

Multiple Protocols: Another interesting experiment would be to merge the applica-
tion implemented in this project and in the partner project by Philémon von Bergen
[1]. An application featuring multiple e-voting protocols could choose automatically the
most efficient protocol according to a scenario (e.g. number of participants or number of
options), or even give the user the choice which protocol should be used for a voting session.

This is a non-exhaustive list of proposals for following projects, but it clearly shows
that the research in the field of decentralized e-voting is certainly not at its end and there
is still a lot of room for interesting projects in this area.
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A User Handbook

A User Handbook

This chapter describes how the MobiVote Application can be used in practice.

A.1 Purpose of this Application

MobiVote can be used as an e-voting system for a small group of people. A possible use
case would be a vote in a board of directors of a company, or any other committee where
a group of people want to seek a decision in a secure manner. With MobiVote, such a
vote can be set up very spontaneously as no special infrastructure is required. The system
guarantees the privacy of each voter. It is not possible to find out how a participant has
voted.

A.2 Prerequisites

In order to run a vote using MobiVote, all the participants need to be in possession of a
mobile device such as a smartphone or a tablet computer running at least Android 4.0 (Ice
Cream Sandwich). All the devices also need to be WLAN capable and the WLAN adapter
has to be activated. Currently it is not possible to use mobile devices of other flavours
such as Apple iPhones or devices running Windows mobile. At least two participants are
required in order to run a voting session.

A.3 Installation

The MobiVote application is available as an APK file which can be installed on Android
devices. In order to install the APK file, the file needs to be transferred to the device.
The easiest way to do so is to connect the device to a computer using the USB cable and
copy the APK file to the device. Using a filemanager on the mobile device, locate the
APK file in your filesystem and install it by clicking on it. For this to work, the option
Settings Security Unknown Sources must be enabled.
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A.4 Start of the Application

After a successful installation, the app should be available in the applications screen of
your Android device. The app can be started by clicking on the icon. This leads you to
the main screen of the application (see Figure A.1).

Figure A.1: MobiVote main screen

A.5 Setup a Vote

The group needs to nominate one member as the administrator of the vote. The adminis-
trator is responsible for the orchestration of the voting process. That includes defining
the question and the possible options, approving other people to be in the electorate and
initiating the voting phase.

Admin only: In order to setup a new vote, the nominated administrator selects the
option Votes on the main screen. The appearing screen shows a list of prepared votes,
as well as an option to create a new vote (see Figure A.2 on the following page). In the
“Vote Setup” screen (see Figure A.3 on the next page), the properties of the vote can
be defined, namely the question of the vote and a list of possible answers. The option
Allow blank ballots can be checked if voters should be allowed to cast a blank ballot.
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From here you can either go back if you just want to prepare the vote in advance for an
upcoming session, or you can directly start the vote by clicking on the button Start vote .

Figure A.2: Available votes Figure A.3: Vote setup

A.6 Start a Voting Session

Admin only: In order to establish a voting session, some additional information regarding
the network is required. First, you need to enter an identification into the according
textbox at the top of the screen (see Figure A.4 on the following page). This value defines
how you will be represented in the voting session. Most likely you will want to enter
your name into this box. This value will be saved on the device and will be proposed in
upcoming sessions, but you can change this representation anytime you want to. Moreover,
you are required to tell the application in which wireless network the voting session should
take place. In most cases this will be the network that you are currently connected to. If
you want to use this network, you can just click on the button Use network “XYZ” . In case
you want to use a different network, you can use the button Advanced network configuration .
This screen lets you choose all currently available network (see Figure A.5 on the next
page). When choosing a network, you should consider that all the participants need to
be allowed to connect to this network.
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Figure A.4: Network configuration Figure A.5: Advanced configuration

A.7 Share the Session Parameters

After selecting the network, a screen containing the voting session parameters is displayed
(see Figure A.6 on the following page). Three parameters are required to connect to a
voting session:

• The network name (SSID)

• The group number

• The group password

These three parameters need to be distributed to all the persons who will be allowed
to join the electorate of the vote. To do so, MobiVote provides three ways.

• Plain text: All three parameters are communicated visually or orally as plain text.
The participants can enter them when joining a voting session.

• QR-code: The three parameters are encoded in a QR-code which is displayed
on the same screen. This QR-code can then be scanned using the camera of the
participant’s devices.
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• NFC tag: The three parameters are written to a NFC tag. A NFC tag is a small
magnetic storage token. An example of a NFC tag is depicted in Figure A.7. This
tag can then be passed along the participants who can scan the tag by tapping it
to the back of their device. Please note that NFC functionality is only available in
devices of the latest generation.

Of course it is also possible to use a combination of these three options. Using one of the
sharing methods above, the participants can now join the voting session.

Figure A.6: Network information

Figure A.7: NFC tag

A.8 Join a Voting Session as a Participant

Voter only: Once the administrator has announced the session parameters, the partic-
ipants can join the session using one of the sharing methods outlined in the previous
section. After starting up the MobiVote app, the participants now choose the option
Join electorate . First, you need to enter an identification into the according textbox at
the top of the screen (see Figure A.8 on page 69). This value defines how you will be
represented in the voting session. Most likely you will want to enter your name into this
box. This value will be saved on the device and will be proposed in upcoming sessions,
but you can change this representation anytime you want to. Next, one of the following
methods to join can be chosen:
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• Scan QR-code: Using this method, the QR-code displayed on another device can
be captured using the camera of the device. After the successful capture, the device
is automatically joined into the voting session. In case the session takes place on
a secure WLAN which is not known on the device, the user will be prompted to
enter the WLAN key. This method is probably the easiest and fastest way to join a
voting session.

• Use currently connected network: When choosing this option, the WLAN to
which the device is currently connected will be used. The user will be prompted to
enter the password and the group number (see Figure A.9 on the next page). These
values are both displayed on the device of the administrator who established the
voting session.

• Advanced network configuration: This option provides you with a list of
currently available WLAN configuration (see Figure A.10 on the following page). In
order to join the voting session, you need to choose the WLAN which is displayed
on the screen of the administrator’s device. You will then be prompted to enter
the password and the group number according to the parameters provided by the
administrator.

• Scan NFC tag: This option can be used if you want to use a NFC tag which has
been passed to you from the vote administrator (see Figure A.11 on the next page).
After tapping the NFC tag to the back of the device, the device automatically
connects to the voting session. In case the session takes place on a secure WLAN
which is not known on the device, the user will be prompted to enter the WLAN key.
Please note that this option is only available on devices on which NFC functionality
is available.

68



A User Handbook

Figure A.8: Join electorate Figure A.9: Enter password

Figure A.10: Advanced configuration Figure A.11: Scan NFC tag
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A.9 Define the Electorate

As soon as all participants have joined their devices to the voting session, the adminis-
trator can forward to the next screen by clicking on Next . In the following screen (see
Figure A.12), the administrator can approve all the joined participants by clicking on
the checkbox next to the allowed participants. Each action reflects immediately on all
the joined devices (see Figure A.13). Please note that the administrator can include or
exclude himself in the electorate. Furthermore, the administrator has to define a so called
threshold value. This value defines how many honest behaving participants need to be
available when the vote is tallied. This value has to lie between two and the number of
participants in the electorate. The value can be adjusted using the slider at the bottom
of the screen.

Figure A.12: Administrator defines elec-
torate Figure A.13: Display electorate

A.10 Review the Vote

After having defined the electorate, the administrator can move along the process by
clicking on the Next button. This leads to the review screen (see Figure A.14 on the
following page), where all the participants see a summary of the vote and its electorate.
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All participants have to agree on this setup by clicking on the checkbox next to their
identification. In case some participants disagree, the administrator can always go back and
adjust the electorate. Once all the participants have agreed on the setup, the administrator
can start the actual voting period by clicking on the button Start voting period .

Figure A.14: Vote review

A.11 Voting

In the voting screen (see Figure A.15 on the next page), each participant can select
the preferred option. After confirming the choice, the vote is encrypted and cast. The
following screen (see Figure A.16 on the following page) summarizes which participants
cast their votes and which did not. The administrator has the option to interrupt by
clicking on Cancel vote , in which case no results are obtained. The administrator can also
choose the option Finish vote , in which case the vote is tallied and the results are displayed.
The tally of the vote starts automatically as soon as all participant have cast their votes.
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Figure A.15: Vote screen Figure A.16: Waiting for ballots

A.12 Display the Result

After a successful tally, you will be redirected to the result screen (see Figure A.17 on the
next page) where the result of the vote is displayed along with some statistics. The vote
is archived and can be accessed anytime using the Vote archive option on the main screen.
The administrator has the possibility to repeat the vote. This comes in handy if several
voting rounds are required to reach a decision.
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Figure A.17: Result of the vote

A.13 Vote Archive

The vote archive (see Figure A.18 on the following page), which is accessible through the
main screen, lists all the past votes. Unwanted votes can be deleted using the trash icon
on the right side. An individual vote including the results can be examined in further
detail by clicking on the according list item. If you want to run the exact election again,
the Clone vote button can be used to recreate an empty vote which can then be started in
the usual manner. The Export button allows to export the transcript of this vote to an
XML file. This file could be used to verify that the vote has been done correctly.
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Figure A.18: Vote archive
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