University of Fribourg

The SH E-Voting Protocol

Oliver Spycher

September 29th, 2010

University of Fribourg Bern University of Applied Sciences < □ >

Outline

Motivation - Hybrid Scheme

SH Protocol

Baloti E-Voting Platform

University of Fribourg Bern University of Applied Sciences

Outline

Motivation - Hybrid Scheme

SH Protocol

Baloti E-Voting Platform

< □ >

University of Fribourg Bern University of Applied Sciences

A Good Voting Scheme

- Accuracy (Casted as intended, tallied as casted)
- Uniqueness and Eligibility
- Verifiability (Individual, Universal, Eligibility)
- Privacy (No link vote voter)
- Receipt-Freeness (Not enough)
- Coercion-Resistance (Voter coercion and vote buying are infeasible)

University of Fribourg Bern University of Applied Sciences

A Good Voting Scheme

- Accuracy (Casted as intended, tallied as casted)
- Uniqueness and Eligibility
- Verifiability (Individual, Universal, Eligibility)
- Privacy (No link vote voter)
- Receipt-Freeness (Not enough)
- Coercion-Resistance (Voter coercion and vote buying are infeasible)

University of Fribourg Bern University of Applied Sciences

In Practice

- Accuracy? (Casted as intended, tallied as casted)
- Oniqueness? and ?Eligibility?
- Verifiability (Individual, Universal, Eligibility)
- Privacy? (No link vote voter)
- ?Receipt-Freeness? (Not enough)
- ?Coercion-Resistance? (Voter coercion and vote buying are infeasible)

University of Fribourg Bern University of Applied Sciences

SH in a Hybrid Scheme

- Accuracy (Casted as intended, tallied as casted)
- Uniqueness and Eligibility
- Verifiability (Individual, Universal, Eligibility)
- Privacy (No link vote voter)
- Receipt-Freeness (Not enough)
- Coercion-Resistance (Voter coercion and vote buying are infeasible)

Hybrid Scheme: Revoke at Polling Station

University of Fribourg Bern University of Applied Sciences

Outline

Motivation - Hybrid Scheme

SH Protocol

Baloti E-Voting Platform

< □ >

University of Fribourg Bern University of Applied Sciences

PKI Setup for DSA

Voters are assigned their

- ▶ private key $s \in \mathbb{Z}_q$ safe
- ▶ public key $S = g^{s} \in \mathbb{G}_{q}$

Group Threshold

< □ >

University of Fribourg Bern University of Applied Sciences

Voter Roll		
1: Hugo		
2: Mark		
3: Peter		

< □ >

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public	
1: Hugo	$S_1 = g^{s_1}$	
2: Mark	$S_2 = g^{s_2}$	
3: Peter	$S_3 = g^{s_3}$	

< □ >

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public	Encryption of Vote	
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	

< □ >

University of Fribourg Bern University of Applied Sciences

Page 13

A First Naive Approach without Privacy

Voter Roll	Public	Encryption of Vote	Signature of Enc
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_1, g)$
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_2, g)$
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_3, g)$

< □ →

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public	Encryption of Vote	Signature of Enc
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_1, g)$
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_2, g)$
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_3, g)$

Proof of eligibility: simple

University of Fribourg Bern University of Applied Sciences

Page 15

A First Naive Approach without Privacy

Voter Roll	Public	Encryption of Vote	Signature of Enc
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_1, g)$
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_2, g)$
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_3, g)$

Proof of eligibility: simple

Proof of ownership: simple

< □ >

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public	Encryption of Vote	Signature of Enc
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_1, g)$
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_2, g)$
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_3, g)$

- Proof of eligibility: simple
- Proof of ownership: simple
- Hugo needs to revoke his vote before casting a paper vote
 - 1. Choose uniformly random z from [1, ..., q]
 - 2. Compute $re-enc(w_1, z) = (h^{k_1} \cdot h^z, yes \cdot e^{k_1} \cdot e^z)$ and proof
 - 3. Have polling station authorities sign both
 - 4. Cast $re-enc(w_1, z)$, proof and signature to revocation board

Voter Roll	Public	Encryption of Vote	Signature of Enc
1: Hugo	$S_1 = g^{s_1}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_1, g)$
2: Mark	$S_2 = g^{s_2}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_2, g)$
3: Peter	$S_3 = g^{s_3}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_3, g)$

- Proof of eligibility: simple
- Proof of ownership: simple
- Hugo needs to revoke his vote before casting a paper vote
 - 1. Choose uniformly random z from [1, .., q]
 - 2. Compute $re-enc(w_1, z) = (h^{k_1} \cdot h^z, yes \cdot e^{k_1} \cdot e^z)$ and proof
 - 3. Have polling station authorities sign both
 - 4. Cast $re-enc(w_1, z)$, proof and signature to revocation board

What about Privacy?

< □ >

Mixing authorities jointly compute pseudonyms.

1. Select random α from \mathbb{Z}_q

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

< □ >

University of Fribourg Bern University of Applied Sciences

Mixing authorities jointly compute pseudonyms.

- 1. Select random α from \mathbb{Z}_q
- 2. Publish $\hat{g} = g^{\alpha} \mod p$ (pseudonym generator)

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

< □ >

University of Fribourg Bern University of Applied Sciences

Mixing authorities jointly compute pseudonyms.

- 1. Select random α from \mathbb{Z}_q
- 2. Publish $\hat{g} = g^{\alpha} \mod p$ (pseudonym generator)
- 3. Compute pseudonym $\hat{S}_{\pi(i)} = S_i^{\alpha}(=\hat{g}^{s_i})$

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

< □ >

University of Fribourg Bern University of Applied Sciences

Mixing authorities jointly compute pseudonyms.

- 1. Select random α from \mathbb{Z}_q
- 2. Publish $\hat{g} = g^{\alpha} \mod p$ (pseudonym generator)
- 3. Compute pseudonym $\hat{S}_{\pi(i)} = S_i^{\alpha}(=\hat{g}^{s_i})$

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	
$\hat{S}_1 = \hat{g}^{s_2}$	
$\hat{S}_2 = \hat{g}^{s_3}$	
$\hat{S}_3 = \hat{g}^{s_1}$	

< □ >

University of Fribourg Bern University of Applied Sciences

Mixing authorities jointly compute pseudonyms.

- 1. Select random α from \mathbb{Z}_q
- 2. Publish $\hat{g} = g^{\alpha} \mod p$ (pseudonym generator)
- 3. Compute pseudonym $\hat{S}_{\pi(i)} = S_i^{\alpha} (= \hat{g}^{s_i})$

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	
$\hat{S}_1=\hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	

< □ >

University of Fribourg Bern University of Applied Sciences

Mixing authorities jointly compute pseudonyms.

- 1. Select random α from \mathbb{Z}_q
- 2. Publish $\hat{g} = g^{\alpha} \mod p$ (pseudonym generator)
- 3. Compute pseudonym $\hat{S}_{\pi(i)} = S_i^{\alpha} (= \hat{g}^{s_i})$

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_1, \hat{g})$

< □ >

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_1, \hat{g})$

University of Fribourg Bern University of Applied Sciences

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_1, \hat{g})$

Proof of eligibility

- 1. Hugo reveals his pseudonym \hat{S}_3
- 2. He proves $ZKP[(s_1): S_1 = g^{s_1} \land \hat{S}_3 = \hat{g}^{s_1}]$

< □ →

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_1, \hat{g})$

Proof of eligibility

- 1. Hugo reveals his pseudonym \hat{S}_3
- 2. He proves $ZKP[(s_1): S_1 = g^{s_1} \land \hat{S}_3 = \hat{g}^{s_1}]$

Proof of ownership: simple

Voter Roll	Public
1: Hugo	$S_1 = g^{s_1}$
2: Mark	$S_2 = g^{s_2}$
3: Peter	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = (h^{k_1}, yes \cdot e^{k_1})$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = (h^{k_2}, yes \cdot e^{k_2})$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = (h^{k_3}, yes \cdot e^{k_3})$	$sign(w_3, s_1, \hat{g})$

Proof of eligibility

- 1. Hugo reveals his pseudonym \hat{S}_3
- 2. He proves $ZKP[(s_1) : S_1 = g^{s_1} \land \hat{S}_3 = \hat{g}^{s_1}]$
- Proof of ownership: simple
- Revoke encrypted vote: same as in naive version

< □ ▶

Outline

Motivation - Hybrid Scheme

SH Protocol

Baloti E-Voting Platform

< □ >

University of Fribourg Bern University of Applied Sciences

Page 29

The Baloti Project

Baloti is an online platform that incorporates SH.

Immigrants participate in federal referendums.

The Baloti Project

Baloti is an online platform that incorporates SH.

Immigrants participate in federal referendums.

www.baloti.ch

- Explains political processes in 11 languages.
- Informs on political issues and disputes.
- Runs referenda

< 🗆 🕨