University of Fribourg

Bern University of Applied Sciences

Selectio Helvetica

A Verifiable Internet Voting System

Oliver Spycher

Krems, May 5th, 2011

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

Outline

SH Project

SH Protocol

SH System as in Baloti

University of Fribourg Bern University of Applied Sciences

Outline

SH Project

SH Protocol

SH System as in Baloti

< □ >

University of Fribourg Bern University of Applied Sciences

Page 4

Internet Voting and the SH Project

Perfect internet voting has not been invented

SH to Address Trust

- SH offers a verifiable internet voting service to vote organizers
- SH publishes all documentation and exposes inherent security concerns
- seeks to raise debates on security among all stakeholders, not just security experts

The Baloti Project

- is conducted by our partner institute ZDA
- offers vote participation to migrant population of CH
- uses the SH light service

< □ →

University of Fribourg Bern University of Applied Sciences

Trust in the Integrity of a Vote

Integrity means that

- all legitimate votes are counted as cast
- only legitimate votes are counted
- \rightarrow How relevant is trustworthiness?
- \rightarrow When would you trust your polling station crew?
- \rightarrow What about internet voting?

< □ →

University of Fribourg Bern University of Applied Sciences

Verify Integrity

Verifiability is covered by

- Individual Verifiability: Your vote reached the ballot box
- Eligibility Verifiability: All votes in the ballot box are legitimate
- Universal Verifiability: All votes from the ballot box have been counted
- \rightarrow But what about secrecy?

< □ →

Outline

SH Project

SH Protocol

SH System as in Baloti

< □ >

University of Fribourg Bern University of Applied Sciences

Outline

SH Project

SH Protocol

SH System as in Baloti

< □ >

University of Fribourg Bern University of Applied Sciences

Introduce a Public Board

Voter Roll	
1: Angela	
2: Nick	
3: Silvio	

< □ >

Introduce a Public Board

Voter Roll	Vote
1: Angela	yes
2: Nick	yes
3: Silvio	yes

< □ >

Introduce a Public Board

Voter Roll	Vote
1: Angela	yes
2: Nick	yes
3: Silvio	yes

Verifiability

- Individual
- Eligibility no
- Universal

< □ >

University of Fribourg Bern University of Applied Sciences

A First Naive Approach without Secrecy I

Keys for Signing Votes (DSA over safe primes)

- private key si
- public key S_i, g $(S_i = g^{s_i})$

Use S_i and g to verify signature $sign(m, s_i, g)$ of m

Can't compute s_i given S_i or any other public values

 \rightarrow If s_i is kept secret and m is a vote, the vote must originate from an eligible voter

(□)

University of Fribourg Bern University of Applied Sciences

A First Naive Approach without Secrecy II

Voter Roll	Public	
1: Angela	$S_1 = g^{s_1}$	
2: Nick	$S_2 = g^{s_2}$	
3: Silvio	$S_3 = g^{s_3}$	

< □ >

A First Naive Approach without Secrecy II

Voter Roll	Public	Vote	Signature of Vote
1: Angela	$S_1 = g^{s_1}$	yes	$sign(yes, s_1, g)$
2: Nick	$S_2 = g^{s_2}$	yes	sign(yes, <mark>s</mark> 2, g)
3: Silvio	$S_3 = g^{s_3}$	yes	sign(yes, <mark>s</mark> 3, g)

Verifiability

- Individual
- Eligibility
- Universal

< □ →

University of Fribourg Bern University of Applied Sciences

Introducing Secrecy

Secrecy Requirements

- 1. Privacy (no link vote voter)
- 2. Fairness (no premature result)

Introducing Secrecy

Secrecy Requirements

- 1. Privacy (no link vote voter)
- 2. Fairness (no premature result)

Step by Step

- cast encrypted votes (fairness if trustworthy authorities)
- use pseudonyms for signing (secrecy if trustworthy authorities)
- separation of duty (secrecy and easier to trust authorities)

< □ →

Cast Encrypted Votes I

Keys for Encrypting Votes (IND-CPA ElGamal)

- private key d
- public key e, h $e = h^d$

Use d to decrypt encryption enc(m, e, h) of m

Can't decrypt messages without *d* (or randomness)

Can't compute d given e or any public values

• • •

University of Fribourg Bern University of Applied Sciences

Cast Encrypted Votes II

Use public key e to encrypt votes

Voter Roll	Public	
1: Angela	$S_1 = g^{s_1}$	
2: Nick	$S_2 = g^{s_2}$	
3: Silvio	$S_3 = g^{s_3}$	

< □ >

Cast Encrypted Votes II

Use public key e to encrypt votes

Voter Roll	Public	Encrypted Vote	Signature of Vote
1: Angela	$S_1 = g^{s_1}$	$w_1 = enc(yes, e, h)$	$sign(w_1, s_1, g)$
2: Nick	$S_2 = g^{s_2}$	$w_2 = enc(yes, e, h)$	$sign(w_2, s_2, g)$
3: Silvio	$S_3 = g^{s_3}$	$w_3 = enc(yes, e, h)$	$sign(w_3, s_3, g)$

Verifiability

- Individual
- Eligibility
- Universal (After the voting phase, d is published)

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

Use Pseudonyms for Signing I

Produce Pseudonyms

- For public key S_i select a new random distinct index j.
- Publish pseudonym \hat{S}_j as S_i^{α} and \hat{g} as g^{α} . (α secret)

Can't link any \hat{S}_j to S_i given all public values

Use s_i and \hat{g} to compute own pseudonym \hat{S}_j as \hat{g}^{s_i}

because
$$\hat{g}^{s_i} = (g^lpha)^{s_i} = g^{lpha \cdot s_i} = g^{s_i \cdot lpha} = (g^{s_i})^lpha = S^lpha_i = \hat{S}_j$$

Use \hat{S}_i and \hat{g} to verify signature $sign(m, s_i, \hat{g})$ of m

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

Use Pseudonyms for Signing II

Compute signature using s_i and \hat{g} .

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	
$\hat{S}_1 = \hat{g}^{s_2}$	
$\hat{S}_2 = \hat{g}^{s_3}$	
$\hat{S}_3 = \hat{g}^{s_1}$	

Page 22

Use Pseudonyms for Signing II

Compute signature using s_i and \hat{g} .

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = enc(yes, e, h)$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = enc(yes, e, h)$	$sign(w_2, \frac{s_3}{s_3}, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = enc(yes, e, h)$	$sign(w_3, s_1, \hat{g})$

Use Pseudonyms for Signing II

Compute signature using s_i and \hat{g} .

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = enc(yes, e, h)$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = enc(yes, e, h)$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = enc(yes, e, h)$	$sign(w_3, s_1, \hat{g})$

Verifiability

- Individual (Compute pseudonym to locate vote)
- Eligibility (ZKP of mix)
- Universal (After the voting phase, d is published)

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

Separation of Duty I

Distribute Tasks Among Multiple Trustees

- Distribute d among trustees
 - → published: $e_1 = h^{d_1}, e_2 = h^{d_2}, ..., e_n = h^{d_n}$
 - \rightarrow public key *e* computed as $e_1 \cdot e_2 \cdot \cdot \cdot e_n$
 - \rightarrow private key *d* computed as $d_1 + d_2 + ... + d_n$
 - → can't compute d, unless all $d_1, d_2, ..., d_n$ are known

Have trustees iteratively perform pseudonym generation

 \rightarrow secret $\alpha = \alpha_1 \cdot \alpha_2 \cdots \alpha_n$

 \rightarrow can't compute α , unless all $\alpha_1, \alpha_2, ..., \alpha_n$ are known

\rightarrow Secrecy preserved unless *all* trustees collude

Separation of Duty II

No need to trust single entity

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	
$\hat{S}_1 = \hat{g}^{s_2}$	
$\hat{S}_2 = \hat{g}^{s_3}$	
$\hat{S}_3 = \hat{g}^{s_1}$	

Separation of Duty II

No need to trust single entity

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = enc(yes, e, h)$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = enc(yes, e, h)$	$sign(w_2, \frac{s_3}{s_3}, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = enc(yes, e, h)$	$sign(w_3, s_1, \hat{g})$

Separation of Duty II

No need to trust single entity

Voter Roll	Public
1: Angela	$S_1 = g^{s_1}$
2: Nick	$S_2 = g^{s_2}$
3: Silvio	$S_3 = g^{s_3}$

Pseudonym	Encryption of Vote	Signature of Enc
$\hat{S}_1 = \hat{g}^{s_2}$	$w_1 = enc(yes, e, h)$	$sign(w_1, s_2, \hat{g})$
$\hat{S}_2 = \hat{g}^{s_3}$	$w_2 = enc(yes, e, h)$	$sign(w_2, s_3, \hat{g})$
$\hat{S}_3 = \hat{g}^{s_1}$	$w_3 = enc(yes, e, h)$	$sign(w_3, s_1, \hat{g})$

Verifiability

- Individual (Compute pseudonym to locate vote)
- Eligibility (ZKP of mix)
- Universal (After the voting phase, d is published)

< □ >

University of Fribourg Bern University of Applied Sciences

Features

- Verifiability with no trust constraints towards authorities
- Secrecy assuming at least 1 trustworthy authority
- Privacy in participation as an additional secrecy feature
- Re-usable credentials (personal authentication only once)
- Revocability at polling station despite privacy in participation
- No mixing of votes required before decrypting (fast results)

However..

University of Fribourg Bern University of Applied Sciences Oliver Spycher

Selectio Helvetica: A Verifiable Internet Voting System

Points of Debate

- Handing out secret key s_i to friends
- Handing out secret key si to vote-buyers or coercers
- Long-term privacy
- Voter's platform (computer, voting program)
- Anonymous channel (hard to implement)
- Disputes

< 🗆 >

Outline

SH Project

SH Protocol

SH System as in Baloti

< □ >

University of Fribourg Bern University of Applied Sciences

Special Constraint: Evolving Voter Roll

Voters can join the voter roll anytime (Baloti)

Solution

- Key-pairs (S_i, s_i) are generated by trustees (separation of duty)
- Voter informs vote organizer that he wants to participate
- Vote organizer sends email address and signature of approval to SH
- SH sends registration credential to voter (link) by email
- Voter clicks on link, chooses password and sends a distinct hash to each trustee
- Each trustee associates email address and hash of password with its share of s_i
- \rightarrow Voters obtain their secret s_i by entering their password.

Limitations towards Protocol

- Quality of voter roll depends on authentication of email addresses
- Privacy in participation as an additional secrecy feature is limited for the benefit of usability

Page 34

Protocol Limitations not Inherent to Baloti

- Handing out secret key s_i to friends
- Handing out secret key s_i to vote-buyers or coercers

Thank You!

Questions / Remarks

...go cast your vote at www.baloti.ch

University of Fribourg Bern University of Applied Sciences < □ >