A New Approach Towards Coercion-Resistant Remote E-Voting in Linear Time

Rolf Haenni

Oliver Spycher, Reto Koenig, Michael Schläpfer http://e-voting.bfh.ch

15th International Conference on Financial Cryptography

March 1st, 2011

Introduction

The JCJ Voting Protocol

Coercion-Resistance in Linear Time

Introduction

The JCJ Voting Protocol

Coercion-Resistance in Linear Time

A Good Voting System

Correctness

- → Only authorized voters can vote
- → No voter can vote more than once
- → Valid votes can not be altered
- → All valid votes are counted
- Privacy
 - → Votes can not be linked to voters (not even with the help of the voters)
 - → No premature or partial results are revealed
- Verifiability
 - → Correctness is publicly verifiable

Coercion-Resistance

- Voters can not be urged (neither by offering a reward nor by intimidation) ...
 - → to vote in a particular way
 - → to vote at random
 - → not to vote at all
 - → to give away private keying material
- Coercion-resistance means that the adversary can not decide whether a voter complies with the demands [JCJ05]

Introduction

The JCJ Voting Protocol

Coercion-Resistance in Linear Time

Introduction

- Original protocol from 2005
 - A. Juels, D. Catalano, and M. Jakobsson

Coercion-resistant electronic elections. WPES'05, 4th ACM

Workshop on Privacy in the Electronic Society, 2005

 Offers correctness, privacy, verifiability and coercion-resistance under realistic assumptions

- → Untappable (offline) channel during registration
- → Sender-anonymous channel for vote casting
- → Public bulletin board
- → Majority of trustworthy authorities (registrars, talliers)
- Problems
 - → Quadratic-time tallying procedure (w.r.t. number of votes)
 - → Unrestricted number of votes (board flooding attacks)
 - → Secure platform

Setup and Registration

Setup

- → ElGamal cryptosystem (modified version with two generators)
- → Key pair for registrars (common public key, shared private key)
- → Key pair for talliers (common public key, shared private key)
- → Candidate list C
- Registration
 - \rightarrow Registrars jointly determine at random secret credential σ_i
 - → Voter obtains σ_i from registrars (upon proof of eligibility)
 - → Registrars publish $S_i = E(\sigma_i)$ on bulletin board
 - \rightarrow Registrars prove towards voter correctness of S_i

Voter Roll

- ► The public voter roll results from the registration phase
- Example with n voters

i	Vi	Si
1	Wolf	$E(\sigma_1)$
2	Dwarf	$E(\sigma_2)$
3	Gretel	$E(\sigma_3)$
:	:	:

n Witch $E(\sigma_n)$

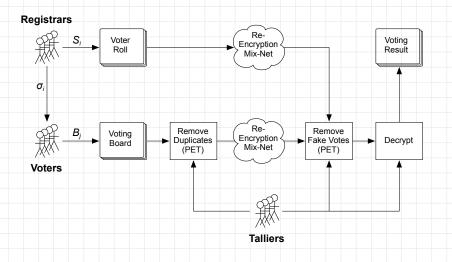
Vote Casting

► Voter posts ballot B_j = (X_j, Y_j, Z_j) to public voting board through anonymous channel

$$\rightarrow X_i = E(\sigma_i)$$

- \rightarrow $Y_j = E(c_j)$ for candidate choice $c_j \in C$
- $ightarrow Z_j =$ zero-knowledge proofs of knowledge of σ_j and $c_j \in C$
- To deceive the adversary, a coerced voter ...
 - \rightarrow selects a fake credential $\sigma'_i \neq \sigma_j$
 - → follows the coercer's instructions
 - \rightarrow secretly casts the proper vote using σ_i

Voting Board


- At the end of the voting period, the public bulletin board may contain three types of invalid votes containing ...
 - → invalid proofs
 - → duplicate credentials
 - → fake credentials
- Example with n voters and N votes

Vi	Si	[j	Xj	Y_j	
Volf	$E(\sigma_1)$		1	$E(\bar{\sigma}_1)$	$E(c_1)$	
warf	$E(\sigma_2)$		2	$E(\bar{\sigma}_2)$	$E(c_2)$	
retel	$E(\sigma_3)$		3	$E(\bar{\sigma}_3)$	$E(c_3)$	
:			4	$E(\bar{\sigma}_4)$	$E(c_4)$	
Vitch	$E(\sigma_n)$		÷	:		
			Ν	$E(\bar{\sigma}_N)$	$E(c_N)$	

Tallying

- Votes with invalid proofs are removed
- ► To remove duplicates, talliers perform O(N²) many plaintext equivalence tests (PET) for all distinct pairs (X_j, X_k)
- ► To remove fake votes, talliers perform O(n·N) many PETs for all remaining pairs (S_i, X_j)
- To sustain privacy, both the S_i and the (X_j, Y_j) lists must be shuffled in a verifiable re-encryption mix-net
- The remaining values Y_j are decrypted and counted
- The whole procedure runs in $\mathcal{O}(N^2)$ time

Protocol Overview

Introduction

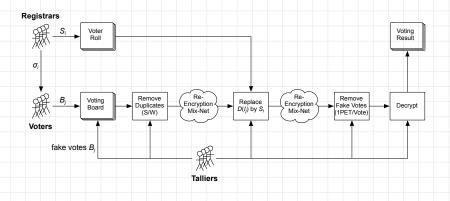
The JCJ Voting Protocol

Coercion-Resistance in Linear Time

Smith/Weber's Method

 Smith (2005) and Weber (2006) proposed a method to avoid expensive PETs

- \rightarrow Talliers share secret random number b
- → Talliers jointly compute $D(S_i^b) = \sigma_i^b$ and $D(X_i^b) = \bar{\sigma}_i^b$
- → Duplicates and fake votes are removed in linear time using hash tables
- This method turned out to be insecure
 - → Posting votes with $E(\bar{\sigma}_i)$ and $E(\bar{\sigma}_i^2)$ leads to $\bar{\sigma}_i^b$ and $(\bar{\sigma}_i^b)^2$
 - → This undermines the anonymity of the mix-net
- However, removing duplicates (performed before mixing) with Smith/Weber's method is safe


The Modified Protocol

- Setup (unchanged)
- Registration (unchanged)
- Vote casting
 - → Extended ballot $B_j = (X_j, Y_j, Z_j, I_j)$ with X_j, Y_j, Z_j unchanged
 - \rightarrow $I_j = E(i)$ for index *i* on voter roll
- Authorities insert a random number of additional fake votes for each index i
 - \rightarrow Necessary to conceal the existence of a proper vote with index *i*
 - \rightarrow Enables voters to deny the fact of having posted a proper vote
 - \rightarrow The number of inserted fake votes must be kept secret

Modified Tallying

- Votes with invalid proofs are removed
- Duplicate votes are removed using Smith/Weber's method
- Remaining votes (X_j, Y_j, I_j) are mixed (1st mix-net)
- ▶ Talliers decrypt $i = D(I_j)$, votes with invalid *i* are deleted
- Voter roll entry S_i is adjoined to (X_j, Y_j)
- Remaining votes (S_i, X_j, Y_j) are mixed (2nd mix-net)
- ▶ Talliers remove votes for which PET on (S_i, X_j) returns false
- ▶ The remaining values Y_j are decrypted and counted
- Modified tallying runs in $\mathcal{O}(N)$ time

Modified Protocol Overview

Introduction

The JCJ Voting Protocol

Coercion-Resistance in Linear Time

Conclusion

- In the paper, we argue that the modified protocol is as coercion-resistance as JCJ (without changing the underlying trust assumptions)
- Tallying in the modified protocol runs in linear time
- Smith/Weber's method helps removing duplicate votes
- Additional fake votes are necessary to conceal the existence of a proper vote
- Board flooding attacks are still possible

Outlook

- Work out formal proof
- Implementation (student project)
- Solution for preventing board flooding attack
 - 🔋 R. Koenig, R. Haenni, S. Fischli

Preventing board flooding attacks in coercion-resistant electronic voting schemes. SEC'11, 26th IFIP International Information Security Conference, Lucerne, Switzerland, 2011

(paper available online on http://e-voting.bfh.ch)

Two more linear-time protocols in pipeline