
Bern University of Applied Sciences, CH-2501 Biel, Switzerland

UniVote System Specification
Version 0.4

Rolf Haenni

04.04.2013

On behalf of the student unions of the University of Bern (SUB), the
University of Zürich (VSUZH), and the Bern University of Applied

Sciences (VSBFH).

Revision History

Revision Date Author(s) Description

0.1 14.07.2012 Rolf Haenni Initial Draft.
0.2 15.08.2012 Rolf Haenni Complete revision of initial draft.
0.3 10.09.2012 Rolf Haenni Includes now the case of late registrations.
0.4 13.03.2013 Rolf Haenni Improved ballot acceptance and closing the urn.
0.4 04.04.2013 Rolf Haenni Revised section on zero-knowledge proofs.

2

Contents

1. Cryptographic System Specification 4
1.1. Cryptographic Primitives . 4

1.1.1. ElGamal Cryptosystem . 4
1.1.2. Schnorr Signatures . 5
1.1.3. Digital Certificates . 6
1.1.4. Zero-Knowledge Proofs of Knowledge 6
1.1.5. Threshold Cryptosystem . 8
1.1.6. Verifiable Mix-Nets . 9

1.2. Overview . 9
1.3. Detailed Protocol Specification . 10

1.3.1. Public Parameters . 10
1.3.2. Public Identifiers and Keys . 10
1.3.3. Registration . 12
1.3.4. Election Setup . 13
1.3.5. Election Preparation . 15
1.3.6. Election Period . 17
1.3.7. Mixing and Tallying . 20

1.4. Details of Proofs . 21
1.4.1. Registration . 21
1.4.2. Registration Renewal . 22
1.4.3. Distributed Key Generation . 23
1.4.4. Constructing the Election Generator 23
1.4.5. Mixing the Public Verification Keys 24
1.4.6. Vote Creation and Casting . 24
1.4.7. Mixing the Encryptions . 24
1.4.8. Decrypting the Votes . 25

1.5. Encoding Choices, Rules, and Vote . 25
1.5.1. Choices and Rules . 25
1.5.2. Encoding Votes . 27

Bibliography 28

3

1. Cryptographic System Specification

1.1. Cryptographic Primitives

The UniVote system is based on several cryptographic building blocks. Apart from stan-
dard ElGamal encryption and decryption, we also need Schnorr signatures, threshold de-
cryptions, non-interactive zero-knowledge proofs of knowledge, verifiable exponentiation and
re-encryption mix-nets, an anonymous channel, and an append-only public bulletin board.
These building blocks will be briefly described below.

1.1.1. ElGamal Cryptosystem

The ElGamal cryptosystem is based on a multiplicative cyclic group (Gq, ·, 1) of order q, for
which the decisional Diffie-Hellman assumption (DDH) is believed to hold [1]. The most
common choice for such a group is the subgroup of quadratic residues Gq ⊂ Z∗p of prime order
q, where p = 2q + 1 is a safe prime. Typically, p is chosen to be large enough (1024–2048
bits) to resist index-calculus and other methods of solving the discrete logarithm problem.
The public parameters of an ElGamal cryptosystem are thus p, q, and a generator g of
Gq = 〈g〉. A suitable generator can be found by picking an arbitrary value γ ∈ Z∗p and by
checking that g = γ2 is different from 1.

An ElGamal key pair is a tuple (x, y), where x ∈R Zq is the randomly chosen private
decryption key and y = gx ∈ Gq the corresponding public encryption key. If m ∈ Gq
denotes the plaintext to encrypt, then

Ency(m, r) = (gr,m · yr) ∈ Gq ×Gq (1.1)

is the ElGamal encryption of m with randomization r ∈R Zq.1 Note that its bit-length
is twice the bit-length of p. For a given encryption E = (a, b) = Ency(m, r), m can be
recovered by using the private decryption key x to compute

Decx(E) = a−x · b = m. (1.2)

Note that m can also be recovered by m = b · y−r in case the randomization r is known.

The ElGamal encryption function is homomorphic with respect to multiplication, which
means that the component-wise multiplication of two ciphertexts yields an encryption of
the product of respective plaintexts:

Ency(m1, r1) · Ency(m2, r2) = Ency(m1 ·m2, r1 + r2). (1.3)

1For improved efficiency, we can pick a randomization r with a reduced, but large enough bit-length to
resist birthdate attacks on discrete logarithms (160–512 bits). Furthermore, we can pre-compute both parts
of an ElGamal encryption prior to knowing the plaintext m.

4

In a homomorphic cryptosystem like ElGamal, a given encryption E = Ency(m, r) can be
re-encrypted by multiplying E with an encryption of the neutral element 1. The resulting
re-encryption,

ReEncy(E, r
′) = E · Ency(1, r

′) = Ency(m, r + r′), (1.4)

is clearly an encryption of m with a fresh randomization r + r′.

Practical applications often require the plaintext to be selected from Zq rather than Gq.
With a safe prime p, we can use the following mapping G : Zq → Gq to encode any integer
plaintext m′ ∈ Zq by a group element m ∈ Gq, which can then be encrypted as described
above:

m = G(m′) =

{
m′ + 1, if (m′ + 1)q = 1,

p− (m′ + 1), otherwise.
(1.5)

When we obtain m ∈ Gq from decrypting the ciphertext, we can reconstruct m′ ∈ Zq by
applying the inverse function G−1 : Gq → Zq to m:

m′ = G−1(m) =

{
m− 1, if m ≤ q,
(p−m)− 1, otherwise.

(1.6)

Note that by adding such an encoding to the ElGamal cryptosystem, it is no longer homo-
morphic with respect to plaintexts in Zq (but re-encryptions can still be computed in the
same way as explained above).

1.1.2. Schnorr Signatures

The Schnorr signature scheme has a setting similar to the ElGamal cryptosystem. It is based
on a multiplicative cyclic group (Gq, ·, 1) of order q, for which the discrete logarithm problem
(DLP) is believed to be intractable in the random oracle model [4]. The most common choice
is a Schnorr group, a subgroup Gq ⊂ Z∗p of prime order q, where p = kq+ 1 is a prime large
enough (1024–2048 bits) to resist methods for solving the discrete logarithm problem, while
q is large enough (160–512 bits) to resist birthday attacks on discrete logarithm problems.
The public parameters of a Schnorr signature scheme are thus p, q, and a generator g of
Gq = 〈g〉. A suitable generator can be found by picking a random value γ ∈R Z∗p and by
checking that g = γk is different from 1. Furthermore, all involved parties must agree on a
cryptographic hash function H : {0, 1}∗ → Zq.2

An Schnorr signature key pair is a tuple (sk, vk), where sk ∈R Zq is the randomly chosen
private signature key and vk = gsk ∈ Gq the corresponding public verification key. If
m ∈ {0, 1}∗ denotes an arbitrary message to sign and r ∈R Zq a randomly selected value,
then

Signsk(m, r) = (a, r − a · sk) ∈ Zq × Zq, where a = H(m||gr), (1.7)

2We can choose any cryptographic hash with the desired security properties by applying modulo q to
the integer interpretation of its hash value. For example, H(x) = SHA-256(x) mod q.

5

is the Schnorr signature of m. Note that its bit-length is twice the bit-length of q. Using
the public verification key vk, a given signature S = (a, b) = Signsk(m, r) for message m
can be verified by computing

Verifyvk (m,S) =

{
accept , if a = H(m||gb · vka),
reject , otherwise.

(1.8)

1.1.3. Digital Certificates

Let m = id||k||t||CA denote a particular type of message, where id is a unique identifier of
the holder of a public encryption or signature key k, t a timestamp, and CA the identifier of
a certificate authorithy with public verification key vkCA and private signature key skCA . Let
Sid = Signsk

CA
(id||k||t||CA, r) be a digital signature of m for some randomization r ∈R Zq.

Then

Zid = Certifysk
CA

(id, k, t) = (id, k, t,CA, Sid) (1.9)

is digital certificate of k issued by CA at time t. It can be verified by checking that
Verifyvk

CA
(Zid) = Verifyvk

CA
(id||k||t||CA, Sid) = accept .

1.1.4. Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof is a cryptographic protocol, where the prover P tries to convince
the verifier V that a mathematical statement is true, but without revealing any information
other than the truth of the statement. A proof of knowledge is a particular proof allowing P
to demonstrate knowledge of a secret information involved in the mathematical statement.

a) Non-Interactive Preimage Proof

One of the most fundamental zero-knowledge proofs of knowledge is the preimage proof.
Let (X,+, 0) be an additively written and (Y, ·, 1) a multiplicatively written group of finite
order, and let φ : X → Y a one-way group homomorphism. If P knows the preimage a ∈ X
(the private input) of a publicly known value b = φ(a) ∈ Y (the public input), then proving
knowledge of a is achieved with the following non-interactive version of the Σ-protocol. To
generate the proof, P performs the following steps:

1. Choose ω ∈R X uniformly at random.

2. Compute t = φ(ω).

3. Compute c = H(b, t) mod q, for q = |image(φ)|.

4. Compute s = ω + c · a.

The pair π = (t, s) is the resulting proof which can be published without revealing any
information about a. Note that image(φ) = Y holds in many concrete instantiations of the
preimage proof, and this implies q = |Y |. To verify π, the V computes c = H(b, t) mod q

and checks if φ(s)
?
= t · bc holds.

6

b) Examples

Knowledge of Discrete Logarithm (Schnorr)

• Let g be a generator of Gq

• Let c = gm be a publicly known commitment of m ∈ Zq

• P proves knowledge of m using the Σ-protocol for:

a = m,

b = c,

φ(x) = gx,

where φ : Zq︸︷︷︸
X

→ Gq︸︷︷︸
Y

Equality of Discrete Logarithms

• Let g1 and g2 be generators of Gq

• Let c1 = gm1 and c2 = gm2 be public commitments of m ∈ Zq

• P proves knowledge of m using the Σ-protocol for:

a = m,

b = (c1, c2),

φ(x) = (gx1 , g
x
2),

where φ : Zq︸︷︷︸
X

→ Gq ×Gq︸ ︷︷ ︸
Y

• Note that t = (t1, t2)

c) Composition of Preimage Proofs

AND Composition

• Consider n one-way group homomorphism φi : Xi → Yi

• Let b1, . . . , bn be publicly known, where bi = φi(ai)

• P proves knowledge of a1, . . . , an using the Σ-protocol for:

a = (a1, . . . , an),

b = (b1, . . . , bn),

φ(x1, . . . , xn) = (φ1(x1), . . . , φn(xn)),

where φ : X1 × · · · ×Xn︸ ︷︷ ︸
X

→ Y1 × · · · × Yn︸ ︷︷ ︸
Y

7

• Note that ω = (ω1, . . . , ωn), t = (t1, . . . , tn), s = (s1, . . . , sn), which implies proofs of
size O(n)

Equality Proof

• Consider n one-way group homomorphism φi : X → Yi

• Let b1, . . . , bn be publicly known, where bi = φi(a)

• P proves knowledge of a using the Σ-protocol for:

a,

b = (b1, . . . , bn),

φ(x) = (φ1(x), . . . , φn(x)),

where φ : X → Y1 × · · · × Yn︸ ︷︷ ︸
Y

• Note that t = (t1, . . . , tn), which implies proofs of size O(n)

1.1.5. Threshold Cryptosystem

A cryptosystem such as ElGamal is called threshold cryptosystem, if the private decryption
key x is shared among n parties, and if the decryption can be performed by a threshold
number of parties t ≤ n without explicitly reconstructing x and without disclosing any
information about the individual key shares xi. A general threshold version of the ElGamal
cryptosystem results from sharing the private key x using Shamir’s secret sharing scheme
[3, 5]. To avoid the need for a trusted third party to generate the shares of the private key,
it is possible to let the n parties execute a distributed key generation protocol [2]. We do
not further introduce these techniques here, but we will assume their application throughout
this paper, for example by saying that some parties jointly generate a private key or that
they jointly decrypt a ciphertext.

A threshold cryptosystem, which is limited to the particular case of t = n, is called distributed
cryptosystem. A simple distributed version of the ElGamal cryptosystem results from setting
x =

∑
i xi. To avoid that x gets publicly known, each of the n parties secretly selects its

own key share xi ∈R Zq and publishes yi = gxi as a commitment of xi. The product y =∏
i yi = g

∑
i xi = gx is then the common public encryption key. If E = (a, b) = Ency(m, r)

is a given encryption, then m can be jointly recovered if each of the n parties computes
ai = a−xi using its own key share xi. The resulting product a−x =

∏
i ai can then be used

to derive m = Decx(E) = a−x · b from b.3 Instead of performing this simple operation in
parallel, it is also possible to perform essentially the same operation sequentially in form of
a partial decryption function Dec′xi(E) = (a, a−xi · b). Applying Dec′xi “removes” from E
the public key share yi by transforming it into a new encryption E′ = Dec′xi(E) for a new
public key y · y−1

i . If all public key shares are removed in this way (in an arbitrary order),
we obtain a trivial encryption (a,m) from which m can be extracted.

3Alternatively, each party may compute mi = Decxi(E) = a−xi · b by applying the normal ElGamal
decryption function. The plaintext message can then be recovered by m = b1−n ·

∏
i mi.

8

To guarantee the correct outcome of a threshold or distributed decryption, all involved
must prove that they followed the protocol properly. In the case of the above distributed
version of the ElGamal cryptosystem, each party must deliver two types of non-interactive
zero-knowledge proofs:

• NIZKP{(xj) : yj = gxj}, to prove knowledge of the discrete logarithm of yj after
committing to xj ,

• NIZKP{(xj) : yj = gxj ∧ aj = a−xj}, to prove equality of the discrete logarithms of
yj and a−1

j after computing aj .

Note that the first proof seems to be subsumed by the second proof, but it is important to
provide the first proof along with yj to guarantee the correctness of y before using it as a
public encryption key.

If {E1, . . . , EN} is a batch of encryptions Ei = (ai, bi) to decrypt and aij = a
−xj
i the

corresponding partial decryptions, then it is more efficient to provide a single combined
proof,

NIZKP{(xj) : yj = gxj ∧ (
∧
i

aij = a
−xj
i)}, (1.10)

instead of N individual proofs of the second type. As discussed in Subsection ??, a combined
proof like this can be implemented efficiently as a batch proof.

1.1.6. Verifiable Mix-Nets

not yet implemented

1.2. Overview

Involved parties:

Root Certificate Authority. RA

Certificate Authority. CA

Election Administration. EA

Election Manager. EM

Election Board. EB

Talliers. T1, . . . ,Tr

Mixers. M1, . . . ,Mm

Voters. V1, . . . ,Vn

Number of ballots: N ≤ n

9

1.3. Detailed Protocol Specification

1.3.1. Public Parameters

The following parameters are assumed to be known in advance and not to change over
time.

Schnorr signature scheme:

• p = 161931481198080639220214033595931441094586304918402813506510547237223
7877754754259914439249774193306631702245697880199001800501144684304139086
8732987125110128087878658851566801277279829851162163414546460062661954882
3238185390034868354933050128115662663653841842699535282987363300852550784
188180264807606304297 (1024 Bits)

• q = (p− 1)/k = 65133683824381501983523684796057614145070427752690897588060
462960319251776021 (256 Bits)

• g = 109291242937709414881219423205417309207119127359359243049468707782004
8626824418974327801277343955962753772182364420355348252837257828360264395
3768769508441079722879300473967183506141904091215758360742296555142874914
9162882960112513332411954585778903685207256083057895070357159920203407651
236651002676481874709 (1024 Bits)

Hash function: (used in Schnorr signatures and zero-knowledge proofs)

• H(x) = SHA-256(x) mod q

1.3.2. Public Identifiers and Keys

Certificates for the following identifiers are assumed to be available in a public certificate
directory.

a) Registration System

Root certificate authority:

• Identifier: RA

• Root certificate: ZRA = (RA, vkRA , t,RA, SRA), self-signed at time t

• Public verification key: vkRA

• Private signature key: skRA

Certificate authority:

• Identifier: CA

• Public certificate: ZCA = (CA, vkCA , t,RA, SCA), signed by RA at time t

• Public verification key: vkCA

10

• Private signature key: skCA

b) Election System

Election Manager:

• Identifier: EM

• Public certificate: ZEM = (EM , vkEM , t,CA, SEM), signed by CA at time t

• Public verification key: vkEM

• Private signature key: skEM

Election Board:

• Identifier: EB

c) Election Trustees

Talliers: (for 1 ≤ j ≤ r)

• Identifier: Tj

• Public certificate: Zj = (Tj , vk j , tj ,CA, STj), signed by CA at time tj

• Public verification key: vk j

• Private signature key: sk j

Mixers: (for 1 ≤ k ≤ m)

• Identifier: Mk

• Public certificate: Zk = (Mk, vkk, tk,CA, SMk
), signed by CA at time tk

• Public verification key: vkk

• Private signature key: skk

d) Election Participants

Election administration:

• Identifier: EA

• Public certificate: ZEA = (EA, vkEA , t,CA, SEA), signed by CA at time t

• Public verification key: vkEA

• Private signature key: skEA

Voters: (for 1 ≤ i ≤ n)

• Identifier: Vi

• Personal credentials: credi

11

1.3.3. Registration

Registration can take place at any time, possibly long before an election starts. A registered
voter can use the private signature key multiple times.

a) First-Time Registration

Vi performs the following steps:

1. Choose sk i ∈R Zq uniformly at random.

2. Compute vk i = gsk i mod p.

3. Generate πsk i
= NIZKP{(sk i) : vk i = gsk i mod p} to prove knowledge of sk i (see

Subsection 1.4.1 for details).

4. Send (Vi, credi, vk i, πsk i
) to CA.

Upon receipt, CA performs the following steps:

5. Check validity of (Vi, credi).

6. Check correctness of πsk i
(see Subsection 1.4.1 for details).

7. Determine current timestamp ti.

8. Compute Zi = Certifysk
CA

(Vi, vk i, ti) = (Vi, vk i, ti,CA, Ci).

9. Publish Zi in public certificate directory (append-only).

10. Notify EM that Vi has registered (this step is only necessary to handle late registra-
tions, see paragraph below).

b) Registration Renewal

The above procedure allows Vi to renew the registration at any time, simply by performing
the same steps again. The new certificate Z̄i = (Vi, v̄k i, t̄i,CA, C̄i) will contain a timestamp
t̄i > ti, which will implicitly disqualify any former certificate Zi = (Vi, vk i, ti,CA, Ci) in
current or future elections. CA should warn Vi before issuing a new certificate.

c) Late Registration

In principle, the implemented protocol requires the voter to register prior to an election.
In some contexts, however, it will be impossible to in force that all voters have registered
when the election starts. Those without a registration would then be excluded from casting
a vote.

Let Vi be an eligible voter in a current election. This can be tested by checking if H(Vi) ∈
HV , where V is denotes the set of eligible voters and HV the corresponding set of hash
values as published on EB (see Subsection 1.3.5). A late registration invokes the procedure
described in Subsection 1.3.6.

12

1.3.4. Election Setup

The following tasks can be performed in advance, possibly long before the election starts.

a) Initialization

Upon request from EA to run an election, EM performs the following steps:

1. Choose unique election identifier id .

2. Select ZEA = (EA, vkEA , t,CA, SEA) from the public certificate directory. Check that
Verifyvk

CA
(ZEA) = accept .

3. Generate signature SEA = Signsk
EM

(id ||ZEA).

4. Publish (EM , id , ZEA, SEA) on EB .

b) Election Definition

EA performs the following steps:

1. Define textual description of the election event descr .

2. Define security parameter ` (e.g. ` = 2048 bits)

3. Define talliers T = {T1 . . . ,Tr}.

4. Define mixers M = {M1 . . . ,Mm}.

5. Generate signature Sdescr = Signsk
EA

(id ||descr ||`||T ||M).

6. Publish (EA, id , descr , `, T,M, Sdescr) on EB .

EM performs the following steps:

7. Check that Verifyvk
EA

(id ||descr ||`||T ||M,Sdescr) = accept .

8. For each Tj ∈ T , select Zj = (Tj , vk j , tj ,CA, STj) from public certificate directory
and check that Verifyvk

CA
(Zj) = accept . Let ZT = {Zj : 1 ≤ j ≤ r}.

9. For each Mk ∈M , select Zk = (Mk, vkk, tk,CA, SMk
) from public certificate directory

and check that Verifyvk
CA

(Zk) = accept . Let ZM = {Zk : 1 ≤ k ≤ m}.

10. Generate signature STM = Signsk
EM

(id ||ZT ||ZM).

11. Publish (EM , id ,ZT ,ZM , STM) on EB .

13

c) Parameter Generation

EM performs the following steps:4

1. Define ElGamal parameters P (of length ` bits), Q = (P − 1)/2, and G ∈ {2, 3, 4}
(the smallest possible value). We use capital letters to distinguish them from Schnorr
parameters.

2. Generate signature SPQG = Signsk
EM

(id ||P ||Q||G).

3. Publish (EM , id , P,Q,G, SPQG) on EB .

d) Distributed Key Generation

Each Tj ∈ T performs the following steps:

1. Check that Verifyvk
EM

(id ||P ||Q||G,SPQG) = accept .

2. Choose xj ∈R ZQ uniformly at random.

3. Compute yj = Gxj mod P .

4. Generate πxj = NIZKP{(xj) : yj = Gxj mod P} to prove knowledge of xj (see Sub-
section 1.4.3 for details).

5. Generate signature Syj = Signskj
(id ||yj ||πxj).

6. Publish (Tj , id , yj , πxj , Syj) on EB .

EM performs the following steps:

7. For each Tj ∈ T , do the following:

a) Check that Verifyvkj
(id ||yj ||πxj , Syj) = accept .

b) Check correctness of πxj (see Subsection 1.4.3 for details).

8. Compute y =
∏
j yj mod P .

9. Generate signature Sy = Signsk
EM

(id ||y).

10. Publish (EM , id , y, Sy) on EB .

4The same set of parameters may be used for several elections with the same security parameter.

14

e) Constructing the Election Generator

Let g0 = g the publicly known generator of the Schnorr signature scheme. Each Mk ∈ M
performs the following steps (in ascending order for 1 ≤ k ≤ m):

1. Choose αk ∈R Zq at random.

2. Compute blinded generator gk = gαk
k−1 mod p.

3. Generate παk
= NIZKP{(αk) : gk = gαk

k−1 mod p} to prove knowledge of αk (see
Subsection 1.4.4 for details).

4. Generate signature Sgk = Signskk
(id ||gk||παk

).

5. Publish (Mk, id , gk, παk
, Sgk) on EB .

EM performs the following steps:

6. For each Mk ∈M , do the following:

a) Check that Verifyvkk
(id ||gk||παk

, Sgk) = accept .

b) Check correctness of παk
(see Subsection 1.4.4 for details).

7. Let ĝ = gm be the election generator.

8. Generate signature Sĝ = Signsk
EM

(id ||ĝ).

9. Publish (EM , id , ĝ, Sĝ) on EB .

1.3.5. Election Preparation

The following tasks are performed shortly before starting the election.

a) Definition of Election Options

EA performs the following steps:

1. Define the set of choices C and a rule set R describing the set V∗ = Votes(C,R) of
valid election options, where Votes is a publicly known function (see Section 1.5.1 for
details).

2. Generate signature SC = Signsk
EA

(id ||C||R).

3. Publish (EA, id , C,R, SC) on EB .

15

b) Publication of Election Data

EM performs the following steps:

1. Check that Verifyvk
EA

(id ||C||R,SC) = accept .

2. Generate signature Sdata = Signsk
EM

(id ||EA||descr ||P ||Q||G||y||ĝ||C||R).

3. Publish (EM , id ,EA, descr , P,Q,G, y, ĝ, C,R, Sdata) on EB .

c) Electoral Roll Preparation

EA performs the following steps:

1. Define the electoral roll as the set of eligible Voters V = {V1, . . . ,Vn}.

2. Compute HV = {H(V1), . . . ,H(Vn)}.

3. Generate signature SV = Signsk
EA

(id ||HV).

4. Publish (EA, id , HV , SV) on EB .

EM performs the following steps:

5. Check that Verifyvk
EA

(id ||HV , SV) = accept .

6. For every H(Vi) ∈ HV , select the most recent Zi = (Vi, vk i, ti,CA, Ci) from the public
certificate directory. For each Zi, check that Verifyvk

CA
(Zi) = accept . If yes, add it

to the list of registered voters ZV = {Z1, . . . , Zn}.5

7. Generate signature SV = Signsk
EM

(id ,ZV).

8. Publish (EM , id ,ZV , SV) on EB .

d) Mixing the Public Verification Keys

Let VK 0 = {vk1, . . . , vkn} be the (ordered) set of public verification keys in ZV . Repeat
the following steps for each Mk ∈M (in ascending order for 1 ≤ k ≤ m):

1. Shuffle the set of public verification keys VK k−1 into VK k:

a) Compute blinded verification key vk ′i = vkαk
i for every vk i ∈ VK k−1.

b) Choose permutation ψk : [1, n]→ [1, n] uniformly at random.

c) Let VK k = {vk ′ψk(i) : 1 ≤ i ≤ n} = Shuffleψk
(VK k−1, αk) be the new (ordered)

set of public verification keys shuffled according to ψk.

2. Generate πψk
= NIZKP{(ψk, αk) : gk = gαk

k−1 ∧ VK k = Shuffleψk
(VK k−1, αk)} using

Wikström’s proof of a shuffle (see Section 1.4.5 for details).

3. Generate signature SVKk
= Signskk

(id ||VK k||πψk
).

5In many contexts, the number of registered voters is likely to be much smaller than the number of
eligible voters.

16

4. Publish (Mk, id ,VK k, πψk
, SVKk

) on EB .

EM performs the following steps:

5. For each Mk ∈M , do the following:

a) Check that Verifyvkk
(id ||VK k||πψk

, SVKk
) = accept .

b) Check correctness of πψk
(see Section 1.4.5 for details).

6. Let VK ′ = VKm = {vk ′ψ(i) : 1 ≤ i ≤ n} for ψ = ψm ◦ · · · ◦ ψ1.

7. Generate signature SVK ′ = Signsk
EM

(id ,VK ′).

8. Publish (EM , id ,VK ′, SVK ′) on EB .

1.3.6. Election Period

a) Late Registration

Upon notification of a newly registered voter Vi during the election period of the election
id (see Subsection 1.3.3), EM performs the following steps:

1. Check if H(Vi) ∈ HV .

2. Select the new certificate Z̄i = (Vi, v̄k i, t̄i,CA, C̄i) from the public certificate directory.
Check that Verifyvk

CA
(Z̄i) = accept .

3. Generate signature SZ̄i
= Signsk

EM
(id , Z̄i).

4. Publish (EM , id , Z̄i, SZ̄i
) on EB . Let Z̄V denote the current set of certificates added

during the election period.

Let v̄k i,0 = v̄k i be the new verification key from Z̄i. Repeat the following steps for each
Mk ∈M (in ascending order for 1 ≤ k ≤ m):6

5. Compute v̄k i,k = v̄k
αk
i,k−1.

6. Generate πv̄k i,k
= NIZKP{(αk) : gk = gαk

k−1 ∧ v̄k i,k = v̄k
αk
i,k−1} (see Subsection 1.4.2 for

details).

7. Generate signature Sv̄k i,k
= Signskk

(id ||v̄k i,k||πv̄k i,k
).

8. Publish (Mk, id , v̄k i,k, πv̄k i,k
, Sv̄k i,k

) on EB .

EM performs the following steps:

9. For each Mk ∈M , do the following:

a) Check that Verifyvkk
(id ||v̄k i,k||πv̄k i,k

, Sv̄kk
) = accept .

b) Check correctness of πv̄k i,k
(see Subsection 1.4.2 for details).

10. Let v̄k
′
i = v̄k i,m = v̄k

α
i .

6Note that this procedure corresponds to the borderline case of the general mixing procedure for a single
innput public key (with a simplified proof).

17

11. Generate signature Sv̄k ′i = Signsk
EM

(id ,Vi, v̄k
′
i).

12. Publish (EM , id ,Vi, v̄k
′
i, Sv̄k ′i

) on EB . Let V̄K
′ denote the set of all public keys v̄k

′
i

added during the election period.

b) Late Renewal of Registration

Essentially the same steps are repeated, if the current set ZV ∪ Z̄V contains an earlier
certificate Ẑi = (Vi, v̂k i, t̂i,CA, Ĉi) of Vi. Note that the first part of the above procedure is
not repeated, since Ẑi ∈ ZV ∪ Z̄V implies that Ẑi has already been verified. Let v̂k i,0 = v̂k i
be the former verification key from Ẑi. Repeat the following steps for each Mk ∈ M (in
ascending order for 1 ≤ k ≤ m):7

1. Compute v̂k i,k = v̂k
αk

i,k−1.

2. Generate πv̂k i,k
= NIZKP{(αk) : gk = gαk

k−1 ∧ v̂k i,k = v̂k
αk

i,k−1} (see Subsection 1.4.2 for
details).

3. Generate signature Sv̂k i,k
= Signskk

(id ||v̂k i,k||πv̂k i,k
).

4. Publish (Mk, id , v̂k i,k, πv̂k i,k
, Sv̂k i,k

) on EB .

EM performs the following steps:

5. For each Mk ∈M , do the following:

a) Check that Verifyvkk
(id ||v̂k i,k||πv̂k i,k

, Sv̂k i,k
) = accept .

b) Check correctness of πv̂k i,k
(see Subsection 1.4.2 for details).

6. Let v̂k
′
i = v̂km = v̂k

α

i .

7. Generate signature S
v̂k
′
i

= Signsk
EM

(id ,Vi, v̂k
′
i).

8. Publish (EM , id ,Vi, v̂k
′
i, Sv̂k ′i

) on EB . Let V̂K
′
denote the set of all public keys v̂k

′
i,

which have been replaced by a new one during the election period.

c) Vote Creation and Casting

Consider the case of Vi ∈ V creating and casting a vote. To do so, Vi performs the following
steps:

1. Retrieve (EM , id ,EA, descr , P,Q,G, y, ĝ, C,R, Sdata) from EB .8

2. Check that Verifyvk
EM

(id ||EA||descr ||P ||Q||G||y||ĝ||C||R,Sdata) = accept .

7Again, this procedure corresponds to the borderline case of the general mixing procedure for a single
innput public key (with a simplified proof).

8EA and descr are not explicitly required in the following steps. But it is important for Vi to learn the
identity of the election administration and the content of the election.

18

3. Determine the set V∗ = Votes(C,R) of election options.9

4. Choose vote vi ∈ V∗.

5. Represent vi as an integer m′i = EncodeC,R(vi) ∈ ZQ.

6. Compute mi = G(m′i) ∈ GQ.

7. Choose ri ∈R ZQ uniformly at random.

8. Compute Ei = Ency(mi, ri) = (ai, bi).

9. Generate πri = NIZKP{(mi, ri) : Ei = Ency(mi, ri)} to prove knowledge of (mi, ri).
Note that if Ei = (ai, bi) = (Gri ,mi · yri) is an ElGamal encryption, then this proof is
equivalent to the proof NIZKP{(ri) : ai = Gri}, which implies knowledge of mi (see
Subsection 1.4.6 for details).

10. Generate signature Si = Signsk i
(id ||Ei||πri) using ĝ.

11. Compute anonymous verification key vk ′j = ĝsk i , where j = ψ(i).

12. Send ballot Bi = (vk ′j , id , Ei, πri , Si) to EB .

Optional: Upon receipt of Bi, EB performs the following tests:

13. Check that vk ′j belongs to an eligible voter: vk ′j ∈ VK ′ ∪ V̄K
′.

14. Check that Vi has not previously submitted another ballot:10

a) Check that no ballot on EB contains vk ′j .

b) If vk ′j ∈ ¯V K
′ ∪ ˆV K

′
, check that no other ballot on EB contains a different key

of Vi from ¯V K
′ ∪ ˆV K

′
.

15. Check validity of Bi

a) Check that Verifyvk ′j
(id ||Ei||πri , Si) = accept using ĝ.

b) Check correctness of πri (see Subsection 1.4.6 for details).

EB publishes Bi, if all tests succeed.

9The set V∗ is not constructed explicitly, it is rather provided implicitly by a proper voting GUI on the
voter’s client computer.

10Since re-voting is not supported, only the first ballot counts.

19

d) Closing the Electronic Urn

When the election period is over, EM performs the following steps:

1. For each Bi = (vk ′j , id , Ei, πri , Si), do the following:

a) Check that vk ′j ∈ VK ′ ∪ V̄K
′.

b) Check that no other (more recent) ballot contains vk ′j

c) If vk ′j ∈ ¯V K
′ ∪ ˆV K

′
, check that no other (more recent) ballot on EB contains a

different key of Vi from ¯V K
′ ∪ ˆV K

′
.

d) Check that Verifyvk ′j
(id ||Ei||πri , Si) = accept using ĝ.

e) Check correctness of πri (see Subsection 1.4.6 for details).

2. Let B be the set of ballot Bi, for which all above checks succeed.

3. Generate signature SB = Signsk
EM

(id ||B).

4. Publish (EM , id ,B, SE) on EB .

1.3.7. Mixing and Tallying

a) Mixing the Encryptions

Let E0 = {E1, . . . , EN}, N ≤ n, be the (ordered) set of encrypted votes in B. Repeat the
following steps for each Mk ∈M (in ascending order for 1 ≤ k ≤ m):

1. Shuffle the set encrypted votes Ek−1 into Ek:

a) Choose r̄k = (r1k, . . . , rNk) ∈R ZNq uniformly at random and compute E′i =
ReEncy(Ei, rik) for every Ei ∈ Ek−1.

b) Choose permutation τk : [1, N]→ [1, N] uniformly at random.

c) Let Ek = {E′τk(i) : 1 ≤ i ≤ N} = Shuffleτk(Ek−1, r̄k) be the new (ordered) set of
encrypted votes shuffled according to τk.

2. Generate πτk = NIZKP{(τk, r̄k) : Ek = Shuffleτk(Ek−1, r̄k)} using Wikström’s proof of
a shuffle (see Section 1.4.7 for details).

3. Generate signature SEk = Signskk
(id ||Ek||πτk).

4. Publish (Mk, id , Ek, πτk , SEk) on EB .

EM performs the following steps:

5. For each Mk ∈M , do the following:

a) Check that Verifyvkk
(id ||Ek||πτk , SEk) = accept

b) Check correctness of πτk (see Section 1.4.7 for details).

6. Let E ′ = Em = {E′τ(i) : 1 ≤ i ≤ N} for τ = τ ◦ · · · ◦ τ1.

20

7. Generate signature SE ′ = Signsk
EA

(id ||E ′).

8. Publish (EM , id , E ′, SE ′) on EB .

b) Decrypting the Votes

Each Tj ∈ T performs the following steps:

1. Check that Verifyvk
EM

(id ||E ′, SE ′) = accept .

2. Let ā = (a1, . . . , aN) for (ai, bi) ∈ E ′.

3. Compute āj = (a1j , . . . , aNj), where aij = a
−xj
i mod P .

4. Generate π′xj = NIZKP{(xj) : [yj = Gxj mod P] ∧
[∧

i aij = a
−xj
i mod P

]
} to prove

knowledge of xj (see Subsection 1.4.8 for details).

5. Generate signature Sāj = Signskj
(id ||āj ||π′xj).

6. Publish (Tj , id , āj , π
′
xj , Sāj) on EB .

EA performs the following steps:

7. For each Tj ∈ T , do the following:

a) Check that Verifyvkj
(id ||āj ||π′xj , Sāj) = accept

b) Check correctness of π′xj (see Subsection 1.4.8 for details).

8. For all 1 ≤ i ≤ N , do the following:

a) Compute mi = bi ·
∏
j aij mod P .

b) Compute m′i = G−1(mi).

c) Compute vi = DecodeC,R(m′i).

9. Let V = {v1, . . . , vN} ∩ V∗ be the list of valid plaintext votes.

10. Generate signature SV = Signsk
EM

(id ||V).

11. Publish (EM , id ,V, SV) on EB .

1.4. Details of Proofs

1.4.1. Registration

This is a standard proof of knowledge of discrete logarithm (Schnorr):

πsk i
= NIZKP{(sk i) : vk i = gsk i mod p} = (t, c, s).

21

a) Generation

Prover: Vi

1. Choose ω ∈R Zq uniformly at random.

2. Compute t = gωj mod p.

3. Compute c = H(vk i||t||Vi) mod q.

4. Compute s = ω + c · sk i mod q.

b) Verification

1. Check that c = H(vk i||t||Vi) mod q.

2. Compute v = gs mod p.

3. Compute w = t · vk ci mod p.

4. Check that v = w.

1.4.2. Registration Renewal

This is a standard proof of equality of discrete logarithm (Pedersen):

πv̄k i,k
= NIZKP{(αk) : gk = gαk

k−1 ∧ v̄k i,k = v̄k
αk
i,k−1} = (t̄, s).

a) Generation

Prover: Mk

1. Choose ω ∈R Zq uniformly at random.

2. Compute t̄ = (t1, t2) = (gωk−1 mod p, v̄k
ω
i,k−1 mod p).

3. Compute c = H(gk||v̄k i,k||t̄||Mk) mod q.

4. Compute s = ω + c · αk mod q.

b) Verification

1. Check that c = H(gk||v̄k i,k||t̄||Mk) mod q.

2. Compute v̄ = (gsk−1 mod p, v̄k
s
i,k−1 mod p).

3. Compute w̄ = (t1 · gck mod p, t2 · v̄k
c
i,k mod p).

4. Check that v̄ = w̄.

22

1.4.3. Distributed Key Generation

This is a standard proof of knowledge of discrete logarithm (Schnorr):

πxj = NIZKP{(xj) : yj = Gxj mod P} = (t, c, s).

a) Generation

Prover: Tj

1. Choose ω ∈R ZQ uniformly at random.

2. Compute t = Gω mod P .

3. Compute c = H(yj ||t||Tj) mod Q.

4. Compute s = ω + c · xj mod Q.

b) Verification

1. Check that c = H(yj ||t||Tj) mod Q.

2. Compute v = Gs mod P .

3. Compute w = t · ycj mod P .

4. Check that v = w.

1.4.4. Constructing the Election Generator

This is a standard proof of knowledge of discrete logarithm (Schnorr):

παk
= NIZKP{(αk) : gk = gαk

k−1 mod p} = (t, c, s).

a) Generation

Prover: Mk

1. Choose ω ∈R Zq uniformly at random.

2. Compute t = gωk−1 mod p.

3. Compute c = H(gk||t||Mk) mod q.

4. Compute s = ω + c · αk mod q.

23

b) Verification

1. Check that c = H(gk||t||Mk) mod q.

2. Compute v = gsk−1 mod p.

3. Compute w = t · gck mod p.

4. Check that v = w.

1.4.5. Mixing the Public Verification Keys

This proof is not yet implemented:

πψk
= NIZKP{(ψk, αk) : gk = gαk

k−1 ∧VK k = Shuffleψk
(VK k−1, αk)}.

1.4.6. Vote Creation and Casting

This is a standard proof of knowledge of discrete logarithm (Schnorr):

πri = NIZKP{(ri) : ai = Gri} = (t, c, s).

a) Generation

Prover: Vi (acting with vk ′j as anonymous identifier)

1. Choose ω ∈R ZQ uniformly at random.

2. Compute t = Gω mod P .

3. Compute c = H(ai||t||vk ′j) mod Q.

4. Compute s = ω + c · ri mod Q.

b) Verification

1. Check that c = H(ai||t||vk j) mod Q.

2. Compute v = Gs mod P

3. Compute w = t · aci mod P .

4. Check that v = w.

1.4.7. Mixing the Encryptions

This proof is not yet implemented:

πτk = NIZKP{(τk, r̄k) : Ek = Shuffleτk(Ek−1, r̄k)}.

24

1.4.8. Decrypting the Votes

This is a general equality proof with multiple functions:

π′xj = NIZKP{(xj) : [yj = Gxj mod P] ∧

[∧
i

aij = a
−xj
i mod P

]
} = (t̄, c, s).

a) Generation

Prover: Tj

1. Choose ω ∈R ZQ uniformly at random.

2. Compute t̄ = (t0, t1, . . . , tN) = (Gω mod P, a−ω1 mod P, . . . , a−ωN mod P).

3. Compute c = H(yj ||āj ||t̄||Tj) mod Q.

4. Compute s = ω + c · xj mod Q.

b) Verification

1. Check that c = H(yj ||āj ||t̄||Tj) mod Q.

2. Compute v̄ = (Gs mod P, a−s1 mod P, . . . , a−sN mod P).

3. Compute w̄ = (t0 · ycj mod P, t1 · ac1j mod P, . . . , tN · acNj mod P).

4. Check that v̄ = w̄.

1.5. Encoding Choices, Rules, and Vote

1.5.1. Choices and Rules

To allow a variety of different election types, we consider two finite sets, a set C of possible
election choices and a set R of election rules. For each election choice c ∈ C in a given
election, the election system outputs the number of votes that c has received from the
voters. Each election rule in R defines some constraints on how voters can distribute their
votes among the election choices. We use v(c) to denote this number for a particular voter.
We distinguish three types of election rules:

• Summation-Rule: The sum of votes for election choices in a subset C ′ ⊆ C is within a
certain range [a, b], i.e.,

∑
c∈C′

v(c) ∈ [a, b]. Such rules will be denoted by Σ : C ′ → [a, b].

• Forall-Rule: For each election choice in a subset C ′ ⊆ C, the number of votes is within
a certain range [a, b], i.e., v(c) ∈ [a, b] for all c ∈ C ′. Such rules will be denoted by
∀ : C ′ → [a, b].

25

• Distinctness-Rule: For each election choice in a subset C ′ ⊆ C, the number of votes
is either equal to 0 or unique within C ′, i.e., v(c) > 0 implies v(c) 6= v(c′) for all other
election choices c′ ∈ C ′ \ {c}. Such rules will be denoted by 6= : C ′.

Two or several sets of candidates and sets of rules can be combined to describe multiple
elections that run in parallel. We call this operation composition of elections and denote it
by

(C1, R1) ◦ (C2, R2) = (C1 ∪ C2, R1 ∪R2)

for two sets of choices C1, C2 and corresponding sets of rules R1, R2. Note that this can be
used to describe party-list elections (see example below).

a) Examples

• Referendum: 1-out-of-2

C = {yes, no}, R =

{
Σ : {yes, no} → [1, 1]

∀ : {yes, no} → [0, 1]

}

• Referendum with Null Votes:

C = {yes, no}, R =

{
Σ : {yes, no} → [0, 1]

∀ : {yes, no} → [0, 1]

}
or

C = {yes, no, null}, R =

{
Σ : {yes, no, null} → [1, 1]

∀ : {yes, no, null} → [0, 1]

}

• Multiple-Choice Referendum / Plurality Voting: 1-out-of-n

C = {c1, . . . , cn}, R =

{
Σ : {c1, . . . , cn} → [1, 1]

∀ : {c1, . . . , cn} → [0, 1]

}

Null votes can be handled as shown above.

• Approval Voting: n-out-of-n

C = {c1, . . . , cn}, R =
{
∀ : {c1, . . . , cn} → [0, 1]

}
• Range Voting: Up to s votes per choice

C = {c1, . . . , cn}, R =
{
∀ : {c1, . . . , cn} → [0, s]

}
• Plurality-at-Large Voting / Limited Voting: k-out-of-n

C = {c1, . . . , cn}, R =

{
Σ : {c1, . . . , cn} → [0, k]

∀ : {c1, . . . , cn} → [0, 1]

}

26

• Cumulative Voting: k votes in total, up to s ≤ k votes per choice

C = {c1, . . . , cn}, R =

{
Σ : {c1, . . . , cn} → [0, k]

∀ : {c1, . . . , cn} → [0, s]

}
Note that k > n is allowed here.

• Preferential Voting (Borda Count): Ranks from 1 to n

C = {c1, . . . , cn}, R =

{
∀ : {c1, . . . , cn} → [1, n]

6= : {c1, . . . , cn}

}

• Preferential Voting (Borda Count): Ranks from 1 to k only

C = {c1, . . . , cn}, R =

{
∀ : {c1, . . . , cn} → [1, k]

6= : {c1, . . . , cn}

}

• Party-List Election with Cumulation: Composition of cumulative voting over a set of
candidates and plurality voting over a set of party-lists

C = {c1, . . . , cn} ∪ {`1, . . . , `m},

R =

{
Σ : {c1, . . . , cn} → [0, k]

∀ : {c1, . . . , cn} → [0, s]

}
∪

{
Σ : {`1, . . . , `m} → [1, 1]

∀ : {`1, . . . , `m} → [0, 1]

}
Null votes (with respect to party-lists) can be handled as shown above.

1.5.2. Encoding Votes

Let C = {c1, . . . , cn} be a set of election choices and vi = v(ci) ≤ ρi the number of votes
attributed to ci by a given voter. With ρi we denote the maximum number of votes that
the election rules in R allow for ci. The tuple v = (v1, . . . , vn) ∈ V∗ represents a valid vote,
where V∗ = Votes(C,R) denotes the set of all valid votes for given sets C and R.

To encode v ∈ V∗ as an integer, consider a bit string of length B =
∑n

i=1 bi, where bi =
blog2 ρic + 1 denotes the number of bits we reserve for each value vi. Furthermore, let
Bi =

∑i−1
j=1 bj be the number of bits in the bit sting prior to vi, i.e., B1 = 0, B2 = b1,

B3 = b1 + b2, . . . , Bn+1 = B. The encoding function EncodeC,R : V∗ → {0, . . . , 2B−1} can
then be defined as follows:

EncodeC,R(v) =

n∑
i=1

vi · 2Bi .

Since some integers in {0, . . . , 2B−1} do not represent valid votes according to the election
rules R, this encoding is not optimal in terms of memory space consumption. In the vast
majority of cases, however, be believe that the size of the message space GQ of the ElGamal
cryptosystem is large enough to support this encoding.

To decode an integer representation x = EncodeC,R(v) back to v = (v1, . . . , vn), we must
decompose the bit string into its components. Mathematically, this decomposition can be
written as follows:

DecodeC,R(x) = (v1, . . . , vn), where vi = bx/2Bic mod 2Bi+1 .

27

Bibliography

[1] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, Advances in Cryptology,
LNCS 196, pages 10–18, Santa Barbara, USA, 1984. Springer.

[2] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In J. Stern, editor, EUROCRYPT’99, 18th Inter-
national Conference on the Theory and Application of Cryptographic Techniques, LNCS
1592, pages 295–310, Prague, Czech Republic, 1999.

[3] T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. W. Davies, ed-
itor, EUROCRYPT’91, 10th Workshop on the Theory and Application of Cryptographic
Techniques, volume 547 of LNCS 547, pages 522–526, Brigthon, U.K., 1991.

[4] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[5] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

28

	Cryptographic System Specification
	Cryptographic Primitives
	ElGamal Cryptosystem
	Schnorr Signatures
	Digital Certificates
	Zero-Knowledge Proofs of Knowledge
	Threshold Cryptosystem
	Verifiable Mix-Nets

	Overview
	Detailed Protocol Specification
	Public Parameters
	Public Identifiers and Keys
	Registration
	Election Setup
	Election Preparation
	Election Period
	Mixing and Tallying

	Details of Proofs
	Registration
	Registration Renewal
	Distributed Key Generation
	Constructing the Election Generator
	Mixing the Public Verification Keys
	Vote Creation and Casting
	Mixing the Encryptions
	Decrypting the Votes

	Encoding Choices, Rules, and Vote
	Choices and Rules
	Encoding Votes

	Bibliography

